Vaisala Weather Transmitter
WXT530 Series
Table of Contents

CHAPTER 1
GENERAL INFORMATION .. 11
 About This Manual ... 11
 General Safety Considerations 11
 ESD Protection .. 12
 Recycling ... 13
 Trademarks .. 13
 License Agreement ... 13
 Regulatory Compliance ... 13
 Warranty ... 14

CHAPTER 2
PRODUCT OVERVIEW .. 15
 WXT530 Series Weather Transmitters 15
 WXT536 .. 18
 WXT535 and WXT534 .. 19
 WXT533 and WXT532 .. 20
 WXT531 .. 20
 Components ... 21
 Optional features .. 24
 USB Cables ... 24
 Mounting Kit ... 25
 Surge Protector ... 26
 Bird Spike Kit .. 27
 Vaisala Configuration Tool 28
 Sensor Heating .. 28

CHAPTER 3
FUNCTIONAL DESCRIPTION .. 29
 Wind Measurement Principle 29
 Precipitation Measurement Principle 32
 PTU Measurement Principle 34
 Heating ... 34
 Analog Input Interface .. 36
 Analog Output Interface 36

CHAPTER 4
INSTALLATION .. 37
 Maritime Installations .. 37
Pressure, Temperature and Humidity Data Message
(aR2) ... 91
Precipitation Data Message (aR3) 92
Supervisor Data Message (aR5) 93
Combined Data Message (aR) 95
Composite Data Message Query (aR0) 95
Polling with CRC .. 96
Automatic Mode .. 98
Automatic Composite Data Message (aR0) 99

SDI-12 Protocol .. 100
Address Query Command (?) 100
Acknowledge Active Command (a) 101
Change Address Command (aAb) 102
Send Identification Command (aI) 102
Start Measurement Command (aM) 103
Start Measurement Command with CRC (aMC) 105
Start Concurrent Measurement (aC) 105
Start Concurrent Measurement with CRC (aCC) 107
Send Data Command (aD) 107
Examples of aM, aC and aD Commands 108
Continuous Measurement (aR) 110
Continuous Measurement with CRC (aRC) 112

NMEA 0183 V3.0 Protocol 113
Device Address (?) ... 113
Acknowledge Active Command (a) 114
MWV Wind Speed and Direction Query 114
XDR Transducer Measurement Query 116
TXT Text Transmission ... 125
Automatic Mode ... 126
Automatic Composite Data Message (aR0) 126

CHAPTER 8
SENSOR AND DATA MESSAGE SETTINGS 127

Wind Sensor ... 127
Checking the Settings (aWU) 127
Setting Fields .. 129
Changing the Settings (aWU) 131

Pressure, Temperature, and Humidity Sensors 134
Checking the Settings (aTU) 134
Setting Fields .. 135
Changing the Settings (aTU) 136

Precipitation Sensor ... 138
Checking the Settings (aRU) 138
Setting Fields .. 139
Changing the Settings (aRU) 142

Supervisor Message .. 144
Checking the Settings (aSU) 144
Setting Fields .. 145
Changing the Settings (aSU) 146

Composite Data Message (aR0) 147
Analog Input ... 149
 Enabling and Disabling Analog Input 152
 Common Sensor Settings [aIU] 152
 Update Interval [I] 152
 Aux Input Averaging Time [A] 153
 Parameter Selection [R] 153
 Getting Data Messages 154
 Aux.rain Sensor Settings [aIA] 154
 Gain [G] .. 154
 Reset Mode [M] 155
 Limit [L] ... 155
 Parameter Selection [aIU,R= bit 2 and bit 10] 155
 Solar Radiation Sensor Settings [aIB] 155
 Gain [G] .. 155
 Parameter Selection [aIU,R= bit 3 and bit 11] 156
 Aux Level Sensor Settings [aIS] 156
 Gain [G] .. 156
 Parameter Selection [aIU,R= (bit 3 and bit 11)] 156
 Aux.temperature Sensor Settings [aIP] 156
 Averaging Time [A] 156
 Parameter Selection [aIU,R= (bit 1 and bit 9)] 157
 Parameter Order for SDI-12 Mode 157
Analog Output ... 157
 Analog Output Operation 157
 Analog Output Scaling 158
 Analog Output Signal for Wind Speed Channel 159
 Analog Output Signal for Wind Direction Chanel 160
 Enabling or Disabling Analog Output 160

CHAPTER 9
MAINTENANCE ... 163
 Cleaning .. 163
 Replacing the PTU Module 164
 Technical Support 165

CHAPTER 10
TROUBLESHOOTING 167
 Self-Diagnostics 170
 Error Messaging/Text Messages 170
 Rain and Wind Sensor Heating Control 171
 Operating Voltage Control 172
 Missing Readings and Error Indication 172

CHAPTER 11
TECHNICAL SPECIFICATIONS 173
 Performance ... 173
 Inputs and Outputs 176
 General Conditions 177
 Materials .. 179
General .. 179
Options and Accessories 180
Type Label ... 181
Dimensions (mm/inch) 182

APPENDIX A
NETWORKING ... 187
Connecting Several Transmitters on Same Bus 187
SDI-12 Serial Interface 187
Wiring .. 187
Communication Protocol 188
RS-485 Serial Interface 189
Wiring .. 189
Communication Protocol 189
ASCII, Polled .. 189
NMEA 0183 v3.0, Query 190
NMEA 0183 v3.0 Query with ASCII Query Commands 192

APPENDIX B
SDI-12 PROTOCOL 195
SDI-12 Electrical Interface 195
SDI-12 Communications Protocol 196
SDI-12 Timing ... 196

APPENDIX C
CRC-16 COMPUTATION 199
Encoding the CRC as ASCII Characters 200
NMEA 0183 v3.0 Checksum Computation 200

APPENDIX D
WIND MEASUREMENT AVERAGING METHOD 201

APPENDIX E
FACTORY CONFIGURATIONS 203
General Unit Settings 204
Wind Configuration Settings 204
PTU Configuration Settings 205
Rain Configuration Settings 205
Supervisor Settings 205

APPENDIX F
WIRING EXTERNAL SENSORS TO WXT536 207
Connecting Snow Depth Sensor to WXT536 208
Connecting Pyranometer to WXT536 211
Connecting Rain Gauge to WXT536 215
List of Figures

Figure 1 Vaisala Weather Transmitter WXT530 Series 15
Figure 2 WXT536 18
Figure 3 WXT535 and WXT534 19
Figure 4 WXT533 and WXT532 20
Figure 5 WXT531 20
Figure 6 WXT536 Components 21
Figure 7 Cut-Away View of WXT536 22
Figure 8 Bottom of WXT536 23
Figure 9 USB Cable 24
Figure 10 Mounting Kit 25
Figure 11 Surge Protector 26
Figure 12 Bird Spike Kit 27
Figure 13 WXT536 with Bird Spike Kit 27
Figure 14 Recommended Mast Location in Open Area 38
Figure 15 Recommended Mast Length on Top of Building 39
Figure 16 Contents of Shipping Container 40
Figure 17 Installing with Protective Packaging 41
Figure 18 Removing Screw Cover 43
Figure 19 North Arrow 43
Figure 20 Mounting WXT531 on Vertical Pole Mast 44
Figure 21 Mounting Transmitter with Mounting Kit 45
Figure 22 Removing Protective Cushion after Installation 46
Figure 23 Mounting Transmitter to Cross Arm (L-Profile) 47
Figure 24 Mounting Bolt Location in Cross Arm 48
Figure 25 Grounding with Bushing and Grounding Kit 49
Figure 26 Sketch of Magnetic Declination 50
Figure 27 Wind Direction Offset 51
Figure 28 Average Operational Current Consumption (with 4Hz Wind Sensor Sampling) 54
Figure 29 Heating Instant Current and Power vs Vh (WXT536, WXT535, WXT533, and WXT532) 56
Figure 30 Heating Instant Current and Power vs Vh (WXT531) 56
Figure 31 Pins of 8-pin M12 Connector 58
Figure 32 Internal Wiring for RS-232, SDI-12, and RS-485 64
Figure 33 Screw Terminal Block 65
Figure 34 Data Communication Interfaces 67
Figure 35 Termination Jumper Positions 68
Figure 36 Service Cable Connection 76
Figure 37 Analog Input Connector Pins 149
Figure 38 Analog Input Settings in Configuration Tool 150
Figure 39 Replacing PTU Module 164
Figure 40 Type Label 181
Figure 41 WXT536 Dimensions 182
Figure 42 WXT535 and WXT534 Dimensions 183
Figure 43 WXT533 and WXT532 Dimensions 184
Figure 44 WXT531 Dimensions .. 185
Figure 45 Mounting Kit Dimensions 186
Figure 46 Timing Diagram ... 197
Figure 47 Wind Measurement Averaging Method 202
Figure 48 Connecting External Sensors to WXT536 207
Figure 49 Connecting Snow Depth Sensor to WXT536 208
Figure 50 Wiring Snow Depth Sensor to WXT536 209
Figure 51 Connecting CMP3 to WXT536 211
Figure 52 Peeling CMP3 Cable Sheath 212
Figure 53 Wiring CMP3 to WXT53 213
Figure 54 Wiring RG13 to WXT536 215
Figure 55 Complete Set of Accessories 218
Figure 56 WXT536 with Surge Protector WSP150 220
Figure 57 WXT536 with Surge Protector WSP152 222
List of Tables

Table 1 Available Options ... 17
Table 2 Heater Resistance ... 35
Table 3 Analog Inputs for External Sensors 36
Table 4 Pin-outs for WXT530 Series Serial Interfaces and Power Supplies .. 58
Table 5 Screw Terminal Pin-outs 59
Table 6 WXT532 mA Output Option Screw Terminal Pin-outs 60
Table 7 RS-232 Wiring .. 61
Table 8 RS-485 Wiring .. 62
Table 9 SDI-12 Wiring .. 62
Table 10 RS-422 Wiring .. 63
Table 11 mA Output Wiring ... 63
Table 12 Screw Terminal Pin-outs for Serial Interfaces and Power Supplies .. 66
Table 13 Standby Power Consumption 70
Table 14 Economic Power Management 71
Table 15 Available Serial Communication Protocols 73
Table 16 Connection Cable Options 74
Table 17 Default Serial Communication Settings for M12/Screw Terminal Connection 77
Table 18 Abbreviations and Units 88
Table 19 Transducer IDs of Measurement Parameters 119
Table 20 Transducer Table ... 124
Table 21 Analog Input Signals ... 149
Table 22 Analog Input Setting Definitions 151
Table 23 aIU Setting Fields [R] 153
Table 24 Analog Output Scaling 158
Table 25 aWU Setting Fields [R] 161
Table 26 Data Validation .. 167
Table 27 Communication Problems 168
Table 28 Error Messaging/Text Messages 171
Table 29 Barometric Pressure ... 173
Table 30 Air Temperature ... 173
Table 31 Relative Humidity .. 174
Table 32 Wind .. 175
Table 33 Inputs and Outputs ... 176
Table 34 Analog Input Options .. 176
Table 35 General Conditions .. 177
Table 36 Analog mA Output Options 177
Table 37 Electromagnetic Compatibility 178
Table 38 Materials ... 179
Table 39 General .. 179
Table 40 Options and Accessories 180
Table 41 General Unit Settings 204
Table 43 Wind Configuration Settings ... 204
Table 44 PTU Configuration Settings ... 205
Table 45 Rain Configuration Settings ... 205
Table 46 General Unit Settings .. 205
Table 47 IRU-9429 Connections .. 210
Table 48 CMP3 Connections .. 214
Table 49 RG13/RG13H Connections ... 216
Table 50 General Parameters ... 225
Table 51 Pressure, Temperature and Humidity Parameters 227
Table 52 Wind Parameters ... 228
Table 53 Precipitation Parameters .. 229
Table 54 Auxiliary Sensor Parameters ... 229
Table 55 Analog mA Output Parameters 231
CHAPTER 1
GENERAL INFORMATION

This chapter provides general notes for the product.

About This Manual

This manual provides information for installing, operating, and maintaining Vaisala Weather Transmitter WXT530 Series transmitters.

General Safety Considerations

Throughout the manual, important safety considerations are highlighted as follows:

WARNING
Warning alerts you to a serious hazard. If you do not read and follow instructions carefully at this point, there is a risk of injury or even death.

CAUTION
Caution warns you of a potential hazard. If you do not read and follow instructions carefully at this point, the product could be damaged or important data could be lost.
Electrostatic Discharge (ESD) can cause immediate or latent damage to electronic circuits. Vaisala products are adequately protected against ESD for their intended use. However, it is possible to damage the product by delivering electrostatic discharges when touching, removing, or inserting any objects inside the equipment housing.

To make sure you are not delivering high static voltages yourself:

- Handle ESD sensitive components on a properly grounded and protected ESD workbench. When this is not possible, ground yourself with a wrist strap and a resistive connection cord to the equipment chassis before touching the boards. When neither of the above is possible, at least touch a conductive part of the equipment chassis with your other hand before touching the boards.

- Always hold the boards by the edges and avoid touching the component contacts.

NOTE

Note highlights important information on using the product.
Recycling

Recycle all applicable material.

Dispose of batteries and the unit according to statutory regulations. Do not dispose with regular household refuse.

Trademarks

WINDCAP®, RAINCAP®, HUMICAP®, BAROCAP® and THERMOCAP® are registered trademarks of Vaisala. Microsoft®, Windows® is a registered trademark of Microsoft Corporation in the United States and/or other countries.

License Agreement

All rights to any software are held by Vaisala or third parties. The customer is allowed to use the software only to the extent that is provided by the applicable supply contract or Software License Agreement.

Regulatory Compliance

The electromagnetic compatibility of the WXT530 series has been tested according to the following product family standard:

EN 61326-1 Electrical equipment for measurement, control and laboratory use - EMC requirements - for use in industrial locations.

The WXT530 series has been enhanced for marine use according to the appropriate sections of the IEC 60945 Maritime Navigation and
Radiocommunication Equipment and Systems - General requirements - Methods of testing.

The WXT530 series is in conformance with the provisions of the RoHS directive of the European Union:

Directive on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (2002/95/EC)

Warranty

Visit our Internet pages for standard warranty terms and conditions: www.vaisala.com/warranty.

Please observe that any such warranty may not be valid in case of damage due to normal wear and tear, exceptional operating conditions, negligent handling or installation, or unauthorized modifications. Please see the applicable supply contract or Conditions of Sale for details of the warranty for each product.
CHAPTER 2
PRODUCT OVERVIEW

This chapter introduces the features of the WXT530 series weather transmitters.

WXT530 Series Weather Transmitters

The WXT530 product family consists of six transmitters.

![WXT530 Series Transmitters](image)

Figure 1 Vaisala Weather Transmitter WXT530 Series
The WXT530 series transmitters are suitable for, for example:

- Agro-meteorological applications
- Building control systems
- Cruisers
- Energy applications
- Environmental monitoring
- Fire weather
- Meteorological test beds
- Noise monitoring
- Researchers
- Sport events
- Weather stations

The WXT530 product family offers a variety of weather parameters. The measurement combinations of each model are listed below.

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
<tr>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
</tbody>
</table>

P = Pressure
T = Temperature
U = Humidity
R = Rain
W = Wind
The transmitters power up with 5 ... 32 VDC and outputs serial data with a selectable communication protocol:

- SDI-12
- ASCII automatic and polled
- NMEA 0183 with query option

There WXT530 series provides four serial interface options:

- RS-232
- RS-485
- RS-422
- SDI-12

The transmitter is equipped with an 8-pin M12 connector for installation, and a 4-pin M8 connector for service use. The transmitter housing is IP65/66 rated.

The following table shows different options available for the product family.

<table>
<thead>
<tr>
<th>Available options</th>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Pack 2: Windows based Vaisala Configuration Tool software with USB service cable (1.4 m)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>USB RS-232/RS-485 cable (1.4 m)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mounting kit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Surge protector</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bird kit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Shielded cables (2 m, 10 m, 40 m)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bushing and grounding kit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Heating</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Analog input option</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mA output option</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
WXT536

WXT536 measures pressure, temperature, humidity, rain, wind speed, and wind direction. It offers an analog input option.

Figure 2 WXT536

1 = Analog input
WXT535 and WXT534

WXT535 measures pressure, temperature, humidity, and rain.

WXT534 measures pressure, temperature, and humidity.

Figure 3 WXT535 and WXT534
WXT533 and WXT532

WXT533 measures rain and wind.

WXT532 measures wind and it offers an mA output option.

WXT531

WXT531 measures rain.
Components

Figure 6 WXT536 Components

1 = Fixing screw and chassis grounding point
2 = Screw cover
3 = Top of the transmitter
4 = Radiation shield
5 = Bottom of the transmitter
Figure 7 Cut-Away View of WXT536

1 = Wind transducers (3 pcs)
2 = Precipitation sensor
3 = Pressure sensor inside the PTU module
4 = Humidity and temperature sensors inside the PTU module
5 = Service port
Figure 8 Bottom of WXT536

1 = Opening for cable gland (if unused, cover with a hexagonal plug). Watertight cable gland (optional, included in the Bushing and Grounding Kit)
2 = 4-pin M8 connector for Service Port
3 = 8-pin M12 connector for power or data communications cable
4 = Alignment direction indicator arrow
5 = Fixing screw and chassis grounding point
Optional features

The WXT530 series includes the following optional features. For a complete list, see Table 40 on page 179. Note that you must select these options when placing the order.

USB Cables

Figure 9 USB Cable

1 = USB RS-232/RS-485 cable with 8-pin M12 threaded connector (1.4 m)
2 = USB service cable with 4-pin M8 threaded connector (1.4 m)

The service cable, while connected between the service port and PC, forces the service port to RS-232 / 19200, 8, N, 1. Note that you need a driver for the USB cable.
Mounting Kit

The optional mounting kit helps mounting the transmitter on a pole mast. When using the optional mounting kit, alignment is needed only when mounting for the first time.

Using the mounting kit also improves the IP classification of the transmitter to IP66. Without the mounting kit, the WXT530 series transmitters are IP65 rated.
Surge Protector

Figure 11 Surge Protector

Vaisala recommends using surge protectors when weather instruments are installed in areas with an elevated risk of lightning strike, such as on top of high buildings or masts, or in open areas.

Surge protectors are also recommended if your cable length exceeds 10 m or you have unshielded, open-wire lines.

Vaisala provides the following surge protectors:

- Vaisala Surge Protector WSP150.
 A compact transient overvoltage suppressor designed for outdoor use. It can be used with all Vaisala wind and weather instruments. Install WSP150 close to the protected instrument (maximum 3 m).

- Vaisala Surge Protector WSP152.
 Designed for use with Vaisala WXT transmitters and WMT sensors. WSP152 protects the host PC against surges entering through the USB port. Install WSP152 close to the PC, no further than the USB cable can reach (1.4 m).
Bird Spike Kit

The optional Bird Spike Kit reduces the interference that birds cause to the wind and rain measurement.

The kit consists of a metallic band with spikes pointing upward. The kit is installed on top of the transmitter. The shape and location of the spikes has been designed so that the interference with wind and rain measurement is minimal.
The spikes do not hurt the birds; they are simply a barrier that makes it difficult for birds to land on top of the transmitter. The bird spike kit does not provide complete protection against birds, but it does render the transmitter unsuitable for roosting and nest-building.

Note that when the kit is in place, more snow can accumulate on the transmitter, and the snow can melt away more slowly.

Vaisala Configuration Tool

Vaisala Configuration Tool is a Windows-based, user-friendly parameter setting software for the WXT530 Series transmitters.

Using this software tool, you can change the device and sensor settings easily in Windows environment.

Sensor Heating

Heating helps to improve the measurement accuracy. See Heating on page 34.
CHAPTER 3
FUNCTIONAL DESCRIPTION

This chapter describes the functions of the WXT530 series transmitters.

Wind Measurement Principle

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

The transmitters use Vaisala WINDCAP sensor technology for wind measurement.

The wind sensor has an array of three equally spaced ultrasonic transducers on a horizontal plane. The unit determines wind speed and wind directions by measuring the time it takes the ultrasound to travel from one transducer to the other two.

The wind sensor measures the transit time (in both directions) along the three paths established by the array of transducers. The transit time depends on the wind speed along the ultrasonic path. For zero wind speed, both the forward and reverse transit times are the same. With wind along the sound path, the up-wind direction transit time increases and the down-wind transit time decreases.
The unit calculates wind speed from the measured transit times using the following formula:

\[V_w = 0.5 \times L \times \left(\frac{1}{t_f} - \frac{1}{t_r}\right) \]

where

- \(V_w \) = Wind speed
- \(L \) = Distance between the two transducers
- \(t_f \) = Transit time in forward direction
- \(t_r \) = Transit time in reverse direction

Measuring the six transit times allows \(V_w \) to be computed for each of the three ultrasonic paths. The computed wind speeds are independent of altitude, temperature, and humidity, which are cancelled out when the transit times are measured in both directions, although the individual transit times depend on these parameters.

The \(V_w \) values of two array paths are enough to compute wind speed and wind direction. A signal processing technique ensures that wind speed and wind direction are calculated from the two array paths with the best quality.

The wind speed is represented as a scalar speed in selected units (m/s, kt, mph, km/h). The wind direction from which the wind comes is expressed in degrees (°). North is represented as 0°, east as 90°, south as 180°, and west as 270°.

The wind direction is not calculated when the wind speed drops below 0.05 m/s. In this case, the last calculated direction output remains until the wind speed increases to the level of 0.05 m/s.

The average values of wind speed and direction are calculated as a scalar average of all samples over the selected averaging time (1 ... 3600 s) with a selectable updating interval. The sample count depends on the selected sampling rate: 4 Hz (default), 2 Hz, or 1 Hz. The minimum and maximum values of wind speed and direction represent the corresponding extremes during the selected averaging time. See Appendix D Wind Measurement Averaging Method, on page 201.
Users can select the computation of the wind speed extreme values in one of two ways:

- Traditional minimum/maximum calculation
- 3-second gust & calm calculation recommended by the World Meteorological Organization (WMO). In this case the highest and lowest 3-second average values (updated once a second) replace the maximum and minimum values in reporting of wind speed, while the wind direction variance is returned in the traditional way.

The transmitter constantly monitors the wind measurement signal quality. If poor quality is detected, the wind values are marked as invalid. If over half of the measurement values are considered invalid, the last valid wind values are returned as missing data. However, in the SDI-12 protocol, the invalid values are marked as zero (0).
Precipitation Measurement Principle

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

The transmitter uses Vaisala RAINCAP Sensor 2-technology in precipitation measurement.

The precipitation sensor comprises of a steel cover and a piezoelectirical sensor mounted on the bottom surface of the cover.

The precipitation sensor detects the impact of individual raindrops. The signals from the impact are proportional to the volume of the drops. The signal of each drop can be converted directly to accumulated rainfall. An advanced noise filtering technique filters out signals originating from other sources than raindrops.

The measured parameters are:

- accumulated rainfall
- rain current and peak intensity
- duration of a rain event

Detecting each drop enables the computing of rain amount and intensity with high resolution.

Precipitation current intensity is internally updated every 10 seconds and represents the intensity during the one minute period before requesting/automatic precipitation message sending (for fast reactions to a rain event, during the first minute of the rain event, the intensity is calculated over the period rain has lasted in 10-second steps instead of a fixed period of one minute). Precipitation peak intensity represents the maximum of the calculated current intensity values since last precipitation intensity reset.

The sensor can also distinguish hail stones from raindrops. The measured hail parameters are the cumulative number of hail stones, current and peak hail intensity and the duration of a hail shower.
The precipitation sensor operates in four modes:

- **Precipitation Start/End mode:**
 Transmitter automatically sends a precipitation message 10 seconds after the recognition of the first drop. The messages are sent continuously as the precipitation proceeds and stop when the precipitation ends.

- **Tipping bucket mode:**
 This mode emulates tipping bucket type precipitation sensors. Transmitter sends automatically a precipitation message when the counter detects one unit increment (0.1 mm/0.01 in).

- **Time mode:**
 Transmitter sends automatically a precipitation message in the update intervals defined by the user.

- **Polled mode:**
 Transmitter sends a precipitation message whenever requested by the user.

For details about the precipitation sensor operation, see Precipitation Sensor on page 138.
PTU Measurement Principle

The PTU module contains separate sensors for pressure, temperature, and humidity measurement.

The measurement principle of the transmitter is based on an advanced RC oscillator and two reference capacitors against which the capacitance of the sensors is continuously measured. The microprocessor of the transmitter performs compensation for the temperature dependency of the pressure and humidity sensors.

The PTU module includes

- Capacitive silicon BAROCAP sensor for pressure measurement,
- Capacitive ceramic THERMOCAP sensor for air temperature measurement
- Capacitive thin film polymer HUMICAP180 sensor for humidity measurement.

Heating

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

When operating the sensor in temperatures below 0 °C (32 °F), select a model with an internal heater and enable the heater for operation.

The heating elements located below the precipitation sensor and inside the wind transducers help keeping the sensors clean from snow and ice. A heating temperature sensor (Th) underneath the precipitation sensor controls the heating. Note that Th is measured inside the equipment, where temperature is much higher than the ambient temperature (Ta).
The heating control tries to keep Th at +15 °C by adjusting the heating power. The heater control switches heating resistors on and off based on heating voltage and Th.

Table 2
Heater Resistance

<table>
<thead>
<tr>
<th>Transmitter model</th>
<th>Heater resistance when Vh < 15 V</th>
<th>Heater resistance when Vh > 15 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>WXT536</td>
<td>15</td>
<td>57</td>
</tr>
<tr>
<td>WXT535</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WXT533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WXT532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WXT531</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

The instant current depends on the heater voltage. You must select the power supply with the instant current in mind. The average (5s) heating power and heater performance do not depend on the heating voltage.

When the heating function is disabled, the heating is off in all conditions. See Supervisor Message on page 144.

NOTE
Snow accumulation can cause temporary wind measurement problems even when heating is enabled.
Analog Input Interface

WXT536 offers an analog input option for solar radiation, external temperature, level measurement, and tipping bucket.

![Diagram of WXT536 with analog inputs labeled 1 and 2]

1	Analog input 1	Sensor A	Solar radiation
2	Analog input 2	Sensor B	Temperature
	Sensor C	Level sensor	
	Sensor D	Tipping bucket	

Analog Output Interface

WXT532 offers an analog output option for wind speed and wind direction measurement.

The output settings are preconfigured at the factory according to your order. WXT532 takes measurements according to the configured averaging time and synthesizes the analog outputs of wind speed and wind direction with an update interval of 0.25 seconds.
CHAPTER 4
INSTALLATION

This chapter provides instructions on installing the transmitter.

NOTE
Do not store the transmitter outdoors. Make sure you switch on the transmitter right after installation.

Maritime Installations

In maritime installations according to IEC 60945, the WXT530 series belongs to the installation category C, which means that it is exposed to weather.

When making maritime installations, pay attention to the following:

- The product is magnetically inert. The compass-safe distance is less than 20 cm. Do not install the transmitter near a standard or a steering magnetic compass. The transmitter must be installed in open space to avoid disturbance in measurements.
- Do not place the transmitter directly in front of a radar.
- Do not install the transmitter next to a powerful RF-transmitter antenna.
Selecting the Location

Following WMO guidelines, select a site that represents the general area of interest to ensure representative ambient measurements.

Make sure that the site that is free from turbulence caused by nearby objects, such as trees and buildings. In general, any object of height (h) does not significantly disturb wind measurement at a minimum distance of 10 times the height of the object. Make sure there is at least 150 m open area in all directions from the mast.

Figure 14 Recommended Mast Location in Open Area
The recommended minimum length (h) for the mast that is installed on top of a building is 1.5 times the height of the building (H). When the diagonal (W) is less than the height (h), the minimum length of the mast is 1.5 W.

WARNING
To protect personnel and the transmitter, install a lightning rod with the tip at least one meter above the transmitter. The rod must be properly grounded, compliant with all applicable local safety regulations.

CAUTION
Installations on top of high buildings or masts and in sites on open grounds are vulnerable to lightning strikes. A nearby lightning strike can induce a high-voltage surge not tolerable by the internal surge suppressors of the instrument.

Additional protection is needed in regions with frequent, severe thunderstorms, especially when long line cables (> 30 m) are used. Vaisala recommends using a surge protector, such as WSP150 and WSP152, in all sites with an elevated risk of lightning strike.
Unpacking

The transmitter comes in a custom shipping container. The figure below shows the contents of the carton.

Figure 16 Contents of Shipping Container

1 = Protective packaging top
2 = Shipping carton
3 = Inner box
4 = Manual, cables, mounting kit (optional)
5 = Installation note
6 = Protective packaging bottom
7 = Transmitter
8 = Bird kit (optional)
Do not remove the top of the package protecting the transducer until you have installed the transmitter. The polypropylene cushion protects the transducers during installation.

![Figure 17 Installing with Protective Packaging](image)

CAUTION

Be careful not to damage the wind transducers located at the top of the three antennas.

Dropping the device can break or damage the transducers. If the antenna bends or twists, re-aligning can be difficult or impossible.

NOTE

Save the container and the packaging materials for future transportation and shipping.
Installing the Transmitter

At the measurement site, you must mount, ground, align, and connect the transmitter to the data logger and the power source.

WARNING

To protect personnel and the device, install a lightning rod with the tip at least one meter above the transmitter. The rod must be properly grounded, compliant with all applicable local safety regulations.

Mounting

The transmitter is easy to install as it does not have any moving parts. The transmitter can be mounted onto

- vertical pole mast
- horizontal cross arm

NOTE

Install the transmitter upright.

NOTE

The transmitter radiation shield reflects light. If you install the transmitter next to a pyranometer, the pyranometer can give incorrect measurements. Install the transmitter on the same level with the pyranometer so that the distance between the units is 70...80 cm (27...31 in).
Mounting on Vertical Pole Mast

To mount a transmitter on a vertical pole mast:

1. Remove the screw cover and insert the transmitter to the pole mast.

 ![Figure 18 Removing Screw Cover](image)

2. Align the transmitter so that the arrow points to north.

 ![Figure 19 North Arrow](image)

3. Tighten the fixing screw and replace the screw cover.
Mounting on Vertical Pole Mast with Mounting Kit

When mounting a transmitter on a pole mast, you can use an optional mounting kit to ease mounting.

![Diagram of mounting process](image)

Figure 20 Mounting WXT531 on Vertical Pole Mast

To mount a transmitter on a vertical pole mast with the mounting kit:

1. Insert the mounting kit adapter to the transmitter bottom.
2. Turn the kit firmly until you feel the adapter snap into the locked position.

3. Mount the adapter to the pole mast but do not tighten the fixing screw.

4. Align the transmitter so that the arrow on the bottom of the transmitter points north.

5. Tighten the fixing screw of the mounting adapter to attach the adapter firmly to the pole mast.
6. Remove the protective cushion.

![Figure 22 Removing Protective Cushion after Installation](image)

NOTE
When removing a transmitter from the pole, turn the transmitter so that it snaps out from the mounting kit. Realignment is not needed when replacing the device.
Mounting on Horizontal Cross Arm

When using the optional mounting kit, alignment is needed only when mounting for the first time.

To mount a transmitter on a horizontal cross arm:

1. Remove the screw cover.
2. Align the horizontal cross arm in south-north direction. See Aligning on page 49.

 If you cannot align the cross arm, adjust the wind direction offset as instructed in Wind Direction Offset on page 51.

3. Mount the transmitter on the cross arm using a mounting bolt (M6 DIN933) and a nut (M6 DIN934).

![Figure 23 Mounting Transmitter to Cross Arm (L-Profile)]

1 = Nut (M6 DIN934)
2 = Mounting bolt (M6 DIN933)
3 = Screw cover
A transmitter is typically grounded by installing it on a mast or a cross arm that provides a good connection to earth ground.

As grounding is provided through the fixing screw (or mounting bolt), it is important that it makes a good ground connection.

Grounding with Bushing and Grounding Kit

If the surface of the mounting point is painted or has some other finishing that prevents a good electrical connection, consider using the Bushing and Grounding Kit (222109) and a cable to ensure ground connection.
Use the Bushing and Grounding Kit to run a cable from the fixing screw to a grounding point. The kit includes:

- A longer fixing screw
- Two nuts and washers
- Abiko connector for the grounding cable

The kit does not include the grounding cable. The minimum grounding conductor size is 4 mm² (AWG 11). Use a 16 mm² conductor to achieve a good ground connection.

Figure 25 on page 49 shows how to assemble and install the kit.

![Figure 25 - Grounding with Bushing and Grounding Kit](image)

1 = Nut
2 = Fixing screw
3 = Abiko connector between two washers

Aligning

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

To help the alignment, there is an arrow and the text "North" on the bottom of the transmitter. Align the transmitter so that this arrow points north.
Wind direction can be referred either to true north, which uses the Earth’s geographic meridians, or to the magnetic north, which is read with a magnetic compass. The magnetic declination is the difference in degrees between the true north and magnetic north. The source for the magnetic declination should be current as the declination changes over time.

Figure 26 Sketch of Magnetic Declination

Compass Alignment

To align a transmitter:

1. If the transmitter is already mounted, loosen the fixing screw on the bottom of the transmitter so that you can rotate it.

2. Use a compass to determine that the transducer heads of the transmitter are exactly in line with the compass and that the arrow on the bottom of the transmitter points north.

3. Tighten the fixing screw.
Wind Direction Offset

If the transmitter cannot be aligned so that the arrow on the bottom points north, make a wind direction offset. Configure the deviation angle in the transmitter.

1. Mount the transmitter to a desired position. See Mounting on page 42.

2. Define the deviation angle from the north-zero alignment. Use the ± sign indication to express the direction from the north line.

3. Enter the deviation angle in the device using the wind message formatting command \texttt{aWU,D} (direction offset). See Checking the Settings (aWU) on page 127.

Now the transmitter transmits the wind direction data by using the changed zero-alignment.
CHAPTER 5
WIRING AND POWER MANAGEMENT

This chapter provides instructions on connecting the power supply and the serial interfaces as well as managing and estimating power consumption.

The transmitter can be accessed through four different serial interfaces:

- RS-232
- RS-485
- RS-422
- SDI-12
- mA output (WXT532)

You can wire them either through the internal screw terminal or the 8-pin M12 connector. Only one serial interface can be used at a time.

CAUTION

The cable opening in the transmitter bottom assembly is covered with hexagonal rubber plugs. If you are not using the cable gland (included in the Bushing and Grounding Kit), keep the opening covered.
Power Supplies

The average current consumption is shown in Figure 28 on page 54. The minimum consumption graph is for SDI-12 standby mode.

Figure 28 Average Operational Current Consumption (with 4Hz Wind Sensor Sampling)
The input power supply must be capable of delivering 60 mA (at 12 V) or 100 mA (at 6 V) instant current spikes with duration of 30 ms. These are drawn by the wind sensor (whenever enabled) at 4 Hz rate, which is the default value for wind sampling. Wind sampling at 2 Hz and 1 Hz rate is also available. See Chapter 8 Sensor and Data Message Settings, on page 127.

Because wind measurement is the most consuming operation in the system, the average current consumption decreases almost in proportion to the sampling rate.

Typically, the average consumption is less than 10 mA. The higher the voltage, the lower the current.

Heating voltage V_{h+} (one of the following three alternatives):

- 12 ... 24 VDC (-10 % ... + 30 %)
- 12 ... 17 VAC$_{rms}$ (-10 % ... +30 %)

The typical DC voltage ranges are:

- 12 VDC ± 20 % (max 1.1 A)
- 24 VDC ± 20 % (max 0.6 A)

Nominally at 15.7 V heating voltage level, the transmitters automatically change the heating element combination to reduce instant current. The input resistance (R_{in}) is radically increased with voltages above 16 V as shown in the following graph. The average (5s) power does not depend on the input voltage.

The recommended range for AC is:

- 12 ... 17 VAC$_{rms}$ (-10 % ... +30 %) max 1.1 A for AC
Figure 29 Heating Instant Current and Power vs Vh (WXT536, WXT535, WXT533, and WXT532)

The power supply must meet the values shown above.
WARNING Make sure that you connect only de-energized wires.

CAUTION To avoid exceeding the maximum ratings in any condition, the voltages must be checked with no load at the power supply output.
Wiring with 8-pin M12 Connector

External Wiring

The 8-pin M12 connector is located on the bottom of the transmitter. The following figure shows the pins of the 8-pin M12 connector as seen from outside the transmitter.

![Figure 31 Pins of 8-pin M12 Connector](image)

The table below shows the pin connections for the 8-pin M12 connector and the wire colors of the respective M12 cable (optional, 2/10 m).

Table 4 Pin-outs for WXT530 Series Serial Interfaces and Power Supplies

<table>
<thead>
<tr>
<th>Wire Color</th>
<th>M12 Pin#</th>
<th>Available for all WXT530 Series models</th>
<th>WXT532 additional option</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RS-232</td>
<td>SDI-12</td>
<td>RS-485</td>
</tr>
<tr>
<td>White</td>
<td>1</td>
<td>Data in (RxD)</td>
<td>Data in/out (Rx)</td>
</tr>
<tr>
<td>Brown</td>
<td>2</td>
<td>Win+ (operating)</td>
<td>Win+ (operating)</td>
</tr>
<tr>
<td>Green</td>
<td>3</td>
<td>GND for data</td>
<td>GND for data</td>
</tr>
<tr>
<td>Yellow</td>
<td>4</td>
<td>Vh+ (heating)</td>
<td>Vh+ (heating)</td>
</tr>
<tr>
<td>Gray</td>
<td>5</td>
<td>-</td>
<td>Data+</td>
</tr>
<tr>
<td>Pink</td>
<td>6</td>
<td>Vh- (heating)</td>
<td>Vh- (heating)</td>
</tr>
<tr>
<td>Blue</td>
<td>7</td>
<td>Data out (TxD)</td>
<td>Data in/out (Tx)</td>
</tr>
<tr>
<td>Red</td>
<td>8</td>
<td>Vin- (operating)</td>
<td>Vin- (operating)</td>
</tr>
</tbody>
</table>
Table 5 Screw Terminal Pin-outs

<table>
<thead>
<tr>
<th>Screw terminal</th>
<th>RS-232</th>
<th>SDI-12</th>
<th>RS-485</th>
<th>RS-422</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 HTG-</td>
<td>Vh- (heating)</td>
<td>Vh- (heating)</td>
<td>Vh- (heating)</td>
<td>Vh- (heating)</td>
</tr>
<tr>
<td>9 HTG+</td>
<td>Vh+ (heating)</td>
<td>Vh+ (heating)</td>
<td>Vh+ (heating)</td>
<td>Vh+ (heating)</td>
</tr>
<tr>
<td>8 SGND</td>
<td>GND for data</td>
<td>GND for data</td>
<td>GND for data</td>
<td>GND for data</td>
</tr>
<tr>
<td>7 RXD</td>
<td>Data in (RxD)</td>
<td>Data in (Rx)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 TX+</td>
<td>-</td>
<td>Data+</td>
<td>Data out (TX-)</td>
<td></td>
</tr>
<tr>
<td>5 TX-</td>
<td>Data out (TxD)</td>
<td>Data out (Tx)</td>
<td>Data -</td>
<td>Data out (TX+)</td>
</tr>
<tr>
<td>4 RX+</td>
<td>-</td>
<td>-</td>
<td>Data in (Rx+)</td>
<td></td>
</tr>
<tr>
<td>3 RX-</td>
<td>-</td>
<td>-</td>
<td>Data in (Rx-)</td>
<td></td>
</tr>
<tr>
<td>2 VIN-</td>
<td>Vin- (operating)</td>
<td>Vin- (operating)</td>
<td>Vin- (operating)</td>
<td>Vin- (operating)</td>
</tr>
<tr>
<td>1 VIN+</td>
<td>Vin+ (operating)</td>
<td>Vin+ (operating)</td>
<td>Vin+ (operating)</td>
<td>Vin+ (operating)</td>
</tr>
</tbody>
</table>

The signal names Data in (RxD) and Data out (TxD) in the table describe the direction of data flow as seen from the transmitter.

NOTE

Ground the external wiring shield. The shield is not connected inside WXT.

NOTE

In true SDI-12, Data in (Rx) and Data out (Tx) lines must be combined.

NOTE

Short circuit loops are required between terminals 3 & 5, and 4 & 6 for RS-485. See Figure 32 on page 64.
Do not use operating power supply ground (VIN-) for communication (RS-232, RS-485, SDI-12, RS-422). Use SGND communication ground (GND).

Table 6 WXT532 mA Output Option Screw Terminal Pin-outs

<table>
<thead>
<tr>
<th>Screw terminal</th>
<th>mA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 HTG-</td>
<td>Vh- (heating)</td>
</tr>
<tr>
<td>9 HTG+</td>
<td>Vh+ (heating)</td>
</tr>
<tr>
<td>8 GND2</td>
<td>GND Iout2</td>
</tr>
<tr>
<td>7 Iout2</td>
<td>Iout2 (direction)</td>
</tr>
<tr>
<td>6 GND1</td>
<td>GND Iout1</td>
</tr>
<tr>
<td>5 Iout1</td>
<td>Iout1 (wind)</td>
</tr>
<tr>
<td>4 NC</td>
<td>-</td>
</tr>
<tr>
<td>3 NC</td>
<td>-</td>
</tr>
<tr>
<td>2 VIN-</td>
<td>Vin- (operating)</td>
</tr>
<tr>
<td>1 VIN+</td>
<td>Vin+ (operating)</td>
</tr>
</tbody>
</table>

The terms "Default wiring" and "RS-422 wiring" refer to the two internal wiring options, see Figure 32 on page 64.
Internal Wiring

By default, the 8-pin M12 connector is wired for:
- RS-232
- RS-485
- SDI-12
- RS-422
- mA output

NOTE
Ground the external wiring shield. The shield is not connected inside WXT.

<table>
<thead>
<tr>
<th>Internal Wiring</th>
<th>External Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin Number</td>
<td>Internal Connector Pin</td>
</tr>
<tr>
<td>1</td>
<td>VIN+</td>
</tr>
<tr>
<td>2</td>
<td>VIN-</td>
</tr>
<tr>
<td>3</td>
<td>RX-</td>
</tr>
<tr>
<td>4</td>
<td>RX+</td>
</tr>
<tr>
<td>5</td>
<td>TX-</td>
</tr>
<tr>
<td>6</td>
<td>TX+</td>
</tr>
<tr>
<td>7</td>
<td>RXD</td>
</tr>
<tr>
<td>8</td>
<td>SGND</td>
</tr>
<tr>
<td>9</td>
<td>HTG+</td>
</tr>
<tr>
<td>10</td>
<td>HTG-</td>
</tr>
</tbody>
</table>

| Shield |
Table 8 RS-485 Wiring

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Internal Connector Pin</th>
<th>Internal Connector Pin function for RS-485</th>
<th>Internal Wiring for RS-485</th>
<th>M12 Pin</th>
<th>External Wiring for RS-485</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN+</td>
<td>Vin + (Operating)</td>
<td>Brown</td>
<td>2</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>VIN-</td>
<td>Vin- (Operating GND)</td>
<td>Red</td>
<td>8</td>
<td>Red</td>
</tr>
<tr>
<td>3</td>
<td>RX-</td>
<td>Data-</td>
<td>Loop with Blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RX+</td>
<td>Data+</td>
<td>Loop with Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TX-</td>
<td>Data-</td>
<td>Blue</td>
<td>7</td>
<td>Blue</td>
</tr>
<tr>
<td>6</td>
<td>TX+</td>
<td>Data+</td>
<td>Gray</td>
<td>5</td>
<td>Gray</td>
</tr>
<tr>
<td>7</td>
<td>RXD</td>
<td></td>
<td>White</td>
<td>1</td>
<td>White</td>
</tr>
<tr>
<td>8</td>
<td>SGND</td>
<td>Communication ground (GND)</td>
<td>Green</td>
<td>3</td>
<td>Green</td>
</tr>
<tr>
<td>9</td>
<td>HTG+</td>
<td>Vh+ (Heating)</td>
<td>Yellow</td>
<td>4</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>HTG-</td>
<td>Vh- (Heating)</td>
<td>Pink</td>
<td>6</td>
<td>Pink</td>
</tr>
</tbody>
</table>

Table 9 SDI-12 Wiring

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Internal Connector Pin</th>
<th>Internal Connector Pin function for SDI-12</th>
<th>Internal Wiring for SDI-12</th>
<th>M12 Pin</th>
<th>External Wiring for SDI-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN+</td>
<td>Vin+ (Operating)</td>
<td>Brown</td>
<td>2</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>VIN-</td>
<td>Vin- (Operating GND)</td>
<td>Red</td>
<td>8</td>
<td>Red</td>
</tr>
<tr>
<td>3</td>
<td>RX-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RX+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>TX-</td>
<td>Data in/out (Tx)</td>
<td>Blue</td>
<td>7</td>
<td>Blue</td>
</tr>
<tr>
<td>6</td>
<td>TX+</td>
<td>Data in/out (Rx)</td>
<td>Gray</td>
<td>5</td>
<td>Gray</td>
</tr>
<tr>
<td>7</td>
<td>RXD</td>
<td></td>
<td>White</td>
<td>1</td>
<td>White</td>
</tr>
<tr>
<td>8</td>
<td>SGND</td>
<td>Communication ground (GND)</td>
<td>Green</td>
<td>3</td>
<td>Green</td>
</tr>
<tr>
<td>9</td>
<td>HTG+</td>
<td>Vh+ (Heating)</td>
<td>Yellow</td>
<td>4</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>HTG-</td>
<td>Vh- (Heating)</td>
<td>Pink</td>
<td>6</td>
<td>Pink</td>
</tr>
</tbody>
</table>

Shield
Table 10 RS-422 Wiring

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Internal Connector Pin</th>
<th>Internal Connector Pin function for RS-422</th>
<th>Internal Wiring for RS-422</th>
<th>M12 Pin</th>
<th>External Wiring for RS-422</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN+</td>
<td>Vin+ (Operating)</td>
<td>Brown</td>
<td>2</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>VIN-</td>
<td>Vin- (Operating GND)</td>
<td>Red</td>
<td>8</td>
<td>Red</td>
</tr>
<tr>
<td>3</td>
<td>RX-</td>
<td>Data in (RX-)</td>
<td>Blue</td>
<td>7</td>
<td>Blue</td>
</tr>
<tr>
<td>4</td>
<td>RX+</td>
<td>Data in (RX+)</td>
<td>Gray</td>
<td>5</td>
<td>Gray</td>
</tr>
<tr>
<td>5</td>
<td>TX-</td>
<td>Data out (TX-)</td>
<td>White</td>
<td>1</td>
<td>White</td>
</tr>
<tr>
<td>6</td>
<td>TX+</td>
<td>Data out (TX+)</td>
<td>Green</td>
<td>3</td>
<td>Green</td>
</tr>
<tr>
<td>7</td>
<td>RXD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>SGND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HTG+</td>
<td>V+ (Heating)</td>
<td>Yellow</td>
<td>4</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>HTG-</td>
<td>Vh- (Heating)</td>
<td>Pink</td>
<td>6</td>
<td>Pink</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shield</td>
</tr>
</tbody>
</table>

Table 11 mA Output Wiring

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Internal Connector Pin</th>
<th>Internal Connector Pin function for mA Output</th>
<th>Internal Wiring for mA Output</th>
<th>M12 Pin</th>
<th>External Wiring for mA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VIN+</td>
<td>Vin+ (Operating)</td>
<td>Brown</td>
<td>2</td>
<td>Brown</td>
</tr>
<tr>
<td>2</td>
<td>VIN-</td>
<td>Vin- (Operating GND)</td>
<td>Red</td>
<td>8</td>
<td>Red</td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iout1</td>
<td>Iout1</td>
<td>Iout1</td>
<td>Blue</td>
<td>7</td>
<td>Blue</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>Gray</td>
<td>5</td>
<td>Gray</td>
</tr>
<tr>
<td>Iout2</td>
<td>Iout2</td>
<td>Iout2</td>
<td>White</td>
<td>1</td>
<td>White</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>Green</td>
<td>3</td>
<td>Green</td>
</tr>
<tr>
<td>9</td>
<td>HTG+</td>
<td>Vh+ (Heating)</td>
<td>Yellow</td>
<td>4</td>
<td>Yellow</td>
</tr>
<tr>
<td>10</td>
<td>HTG-</td>
<td>Vh- (Heating)</td>
<td>Pink</td>
<td>6</td>
<td>Pink</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shield</td>
</tr>
</tbody>
</table>
Internal wiring for RS-232, SDI-12, and RS-485.

Internal wiring for RS-422

Internal wiring for mA output.
Note the different electronics in the mA output version.

Figure 32 Internal Wiring for RS-232, SDI-12, and RS-485
Wiring Using Screw Terminals

To wire using the screw terminals:

1. Loosen the three long screws at the bottom of the transmitter.
2. Pull out the bottom part of the transmitter.
3. Insert the power supply wires and signal wires through the cable gland(s) in the bottom of the transmitter. Cable glands are included in the optional Bushing and Grounding Kit (222109).
4. Connect the wires according to Table 12 on page 66.
5. Replace the bottom part and tighten the three screws. Make sure that the flat cable does not get squeezed or stuck between the top and the funnel for the flat cable and it is properly connected. To make sure that the radiation shield stays straight, do not tighten the screws all the way in one go. Do not overtighten.

Figure 33 Screw Terminal Block
Table 12 Screw Terminal Pin-outs for Serial Interfaces and Power Supplies

<table>
<thead>
<tr>
<th>Screw Terminal PIN</th>
<th>RS-232</th>
<th>SDI-12</th>
<th>RS-485</th>
<th>RS-422</th>
<th>mA Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VIN+</td>
<td>Vin+ (Operating)</td>
<td>Vin+ (Operating)</td>
<td>Vin+ (Operating)</td>
<td>Vin+ (Operating)</td>
<td>Vin+ (Operating)</td>
</tr>
<tr>
<td>2 VIN-</td>
<td>Vin- (Operating GND)</td>
</tr>
<tr>
<td>3 RX-</td>
<td>Data-</td>
<td>Data in (RX-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 RX+</td>
<td>Data+</td>
<td>Data in (RX+)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 TX-</td>
<td>Data out (TxD)</td>
<td>Data in/out (Tx)</td>
<td>Data-</td>
<td>Data out (TX-)</td>
<td>Iout1</td>
</tr>
<tr>
<td>6 TX+</td>
<td>Data+</td>
<td>Data out (TX+)</td>
<td>GND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 SGND</td>
<td>Communication ground (GND)</td>
<td>Communication ground (GND)</td>
<td>Communication ground (GND)</td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>9 HTG+</td>
<td>Vh+ (Heating)</td>
<td>Vh+ (Heating)</td>
<td>Vh+ (Heating)</td>
<td>Vh+ (Heating)</td>
<td>Vh+ (Heating)</td>
</tr>
<tr>
<td>10 HTG-</td>
<td>Vh- (Heating)</td>
<td>Vh- (Heating)</td>
<td>Vh- (Heating)</td>
<td>Vh- (Heating)</td>
<td>Vh- (Heating)</td>
</tr>
</tbody>
</table>

NOTE

Use a shielded cable and ground the external wiring shield.

NOTE

For the SDI-12 mode, the Data in/out (Tx) and Data in/out (Rx) signals must be connected internally by looping pins 5 and 7, or, externally by looping the M12 pins 1 and 7.

NOTE

If the transmitter was ordered with any other serial communication than RS-422, the internal wiring has loops between pins 3 and 5, and between 4 and 6. For RS-422 operation, you must remove the loops. For the RS-485 communication mode, short-circuit jumpers are required between pins 3-5 and 4-6.

3 = RX- Data- Loop with Blue
4 = RX- Data- Blue
5 = RX+ Data+ Loop with Gray
6 = TX+ Data+ Gray

The transmitter has by default factory-installed loops in all serial communication options except RS-422.
Data Communication Interfaces

With RS-485 and RS-422 interfaces, if the data rate is 9600 Bd or higher and the cabling from the transmitter to the host is 600 m (2000 ft) or longer, you must use termination resistors at both ends of the line.

The WXT530 series transmitters with serial communication interface have a built-in termination options. Plain resistor (R) termination or termination with resistor connected series with capacitor can be selected with jumpers. By default, no termination is selected. In RS-422 mode, built-in termination is only between RX- and RX+ lines.
If external line termination is used, resistor range 100 ... 180 Ω is suitable for twisted pair lines. Resistors are connected across RX- to RX+ and across TX- to TX+ (with RS-485 only one resistor needed).

![Termination Jumper Positions](image)

Figure 35 Termination Jumper Positions

1 = NC, no termination
2 = R, 121 ohm termination
3 = RC, 121 ohm series with 4.7 nF capacitor termination

The termination resistors increase power consumption significantly during data transmission. If low power consumption is a must, connect a 0.1 uF capacitor in series with each external termination resistor or use internal RC termination.

Note that the RS-485 interface can be used with four wires (as RS-422).

The main difference between the RS-485 and RS-422 interfaces is their protocol:

- In the RS-422 mode the transmitter is constantly enabled
- In the RS-485 mode the transmitter is enabled only during transmission (for allowing the host’s transmission in the two-wire case).

The RS-232 output swings only between 0 ... +4.5 V. This is enough for modern PC inputs. The recommended maximum for the RS-232 line length is 100 m (300 ft) with 1200 Bd data rate. Higher rates require shorter distance, for instance, 30 m (100 ft) with 9600 Bd.
Power Management

The power consumption varies significantly, depending on the selected operating mode or protocol, the data interface type, the sensor configuration, and the measurement and reporting intervals.

Lowest consumption is achieved with the Native SDI-12 mode, typically about 1 mW in standby (0.1 mA at 12 V), while with ASCII RS-232 or Continuous SDI-12 modes it is about 3 mW in standby. Any activated sensor measurement adds its own extra consumption to the standby power.

Some hints for economic power management are given below. The consumption values are all defined for 12 V supply. For 6 V supply, multiply the values by 1.9. For 24 V supply, multiply the values by 0.65 (see Figure 28 on page 54).
Table 13 Standby Power Consumption

<table>
<thead>
<tr>
<th>Mode</th>
<th>Standby</th>
<th>Wind</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4 Hz sampling rate</td>
<td>4 Hz sampling rate</td>
<td>1 Hz sampling rate</td>
<td>1 Hz sampling rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous measurement</td>
<td>10 s average every 2 min</td>
<td>Continuous measurement</td>
<td>10 s average every 2 min</td>
<td></td>
</tr>
<tr>
<td>RS-232</td>
<td>1.5 mA</td>
<td>+4.5 mA</td>
<td>+ 0.6 mA</td>
<td>+1.3 mA</td>
<td>+0.2 mA</td>
<td></td>
</tr>
<tr>
<td>RS-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDI-12</td>
<td>0.1 mA</td>
<td></td>
<td>+1 mA</td>
<td></td>
<td>+0.7 mA</td>
<td></td>
</tr>
<tr>
<td>continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDI-12 native</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mA)</td>
<td></td>
<td></td>
<td>16 ... 90 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13 Standby Power Consumption

<table>
<thead>
<tr>
<th>Mode</th>
<th>Standby</th>
<th>PTU</th>
<th>PT1000</th>
<th>Level</th>
<th>Tipping bucket</th>
<th>Solar radiation</th>
<th>Precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continuous rain</td>
</tr>
<tr>
<td>RS-232</td>
<td>1.5 mA</td>
<td>+0.9 mA</td>
<td>+0.1 mA</td>
<td>+0.4 mA</td>
<td>+0.1 mA</td>
<td>+0.4 mA</td>
<td>+0.4 mA</td>
</tr>
<tr>
<td>RS-485</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDI-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>continuous</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDI-12 native</td>
<td>0.1 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14 Economic Power Management

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind measurement</td>
<td>The most consuming operation in the system, with extra variations depending on how the wind is reported. If you need long time averages and measure wind constantly, there are no large differences between requesting periods or modes. Fully continuous wind measurement with a 4 Hz sampling rate adds about 4.5 mA to the standby current, depending on the wind and some other climatic conditions. A 10-second average requested every 2 minutes consumes 8 times less. 1 Hz sampling rate decreases it to about one fourth.</td>
</tr>
<tr>
<td>PTU measurement</td>
<td>Adds approximately 0.9 mA to the standby consumption. Each single measurement takes 5 seconds (including the warm-up period). This can be used for estimating the average consumption of the PTU.</td>
</tr>
<tr>
<td>Continuous precipitation</td>
<td>Adds approximately 0.4 mA to the standby consumption. A single, isolated raindrop increases current consumption for about 10 seconds (continued, if more raindrops are detected within the 10-second period).</td>
</tr>
<tr>
<td>ASCII RS-232 Standby consumption</td>
<td>Typically 1.5 mA. The jumper wires across TX+/RX+ and TX-/RX- (only necessary in 2-wire RS-485) increase consumption slightly.</td>
</tr>
<tr>
<td>ASCII RS-232 Polling mode and Automatic mode</td>
<td>Equal consumption. The Automatic mode is a little more economic, since interpreting the poll takes more processing time than starting the Automatic message. However, take care when selecting the Precipitation Auto-send mode, where the sub-modes M=R and M=C can cause extra consumption in rainy conditions due to triggers for sending messages about rain incidents.</td>
</tr>
<tr>
<td>ASCII RS-232 Data transmission</td>
<td>Adds 1 ... 2 mA to the standby consumption during the message sending time. Note that the host device's input (data logger or PC) can constantly draw some current from the TX line.</td>
</tr>
<tr>
<td>RS-485 and RS-422 Data interfaces</td>
<td>Consume about the same amount of power as RS-232. With long data cables the data consumption during data transmission can be much higher, especially when termination resistors are used. On the other hand, the RS-485 driver is in high impedance state when not transmitter. Thus in idle state, no current can be drawn by the host input.</td>
</tr>
<tr>
<td>NMEA modes</td>
<td>They consume about the same as ASCII modes.</td>
</tr>
<tr>
<td>SDI-12 Native mode</td>
<td>M=S, C=1 has the lowest stand by consumption, about 0.1 mA. Note that it can also be used with RS-232 terminals. See the SDI-12 connection diagram in Figure 34 on page 67. In this case, the commands must be in SDI-12 format, but no special line break signals are required. The SDI-12 mode is for polling only.</td>
</tr>
<tr>
<td>SDI-12 Continuous mode</td>
<td>M=R consumes about the same as the ASCII RS-232 mode.</td>
</tr>
</tbody>
</table>
NOTE

If the optional sensor heating is enabled, SDI-12 Native mode consumes the same as ASCII RS-232 mode.

When heating is on (or the temperature is such that it should be on), some 0.08 mA additional current is drawn from the operational power supply.

NOTE

While in Service mode and/or while supplied through the service port the transmitter consumes 0.3 ... 0.6 mA more than in normal mode, when supplied through the main port (M12 connector or screw terminals). When supplied through the service port the minimum voltage level for reliable operation is 6 V. This can also be seen in the supply voltage reading of the Supervisor message - the Vs value is 1 V lower than the actual input voltage.
CHAPTER 6
CONNECTION OPTIONS

This chapter provides instructions on configuring the communication with the transmitter.

Communication Protocols

Once the transmitter is properly connected and powered up, the data transmission can start. The following table shows the communication protocols available in each serial interface.

<table>
<thead>
<tr>
<th>Serial Interface</th>
<th>Communication Protocols Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-232</td>
<td>ASCII automatic and polled</td>
</tr>
<tr>
<td></td>
<td>NMEA 0183 v3.0 automatic and query</td>
</tr>
<tr>
<td></td>
<td>SDI-12 v1.3 and SDI-12 v1.3 continuous measurement</td>
</tr>
<tr>
<td>RS-485</td>
<td>ASCII automatic and polled</td>
</tr>
<tr>
<td></td>
<td>NMEA 0183 v3.0 automatic and query</td>
</tr>
<tr>
<td></td>
<td>SDI-12 v1.3 and SDI-12 v1.3 continuous measurement</td>
</tr>
<tr>
<td>RS-422</td>
<td>ASCII automatic and polled</td>
</tr>
<tr>
<td></td>
<td>NMEA 0183 v3.0 automatic and query</td>
</tr>
<tr>
<td></td>
<td>SDI-12 v1.3 and SDI-12 v1.3 continuous measurement</td>
</tr>
<tr>
<td>SDI-12</td>
<td>SDI-12 v1.3 and SDI-12 v1.3 continuous measurement</td>
</tr>
</tbody>
</table>

You chose the communication protocol (ASCII, NMEA 0183, or SDI-12) when placing your order. To check the communication settings, see and/or change the protocol or other communication settings, see the following sections.
The table below shows the connection cable options for the WXT530 series transmitters. The USB cables connect the transmitter to a PC using a standard USB port. The USB cables also provide operation power to the transmitter when connected. Note that the USB cables do not provide power to the sensor heating.

Table 16 Connection Cable Options

<table>
<thead>
<tr>
<th>Cable Name</th>
<th>Connector on Sensor End</th>
<th>Connector on User End</th>
<th>Order Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB Service cable (1.4 m)</td>
<td>M8 female</td>
<td>USB type A</td>
<td>220614 (includes Vaisala Configuration Tool)</td>
</tr>
<tr>
<td>USB RS232/RS485 cable (1.4 m)</td>
<td>M12 female</td>
<td>USB type A</td>
<td>220782</td>
</tr>
<tr>
<td>2-meter cable</td>
<td>M12 female</td>
<td>No connector; open end wires</td>
<td>222287</td>
</tr>
<tr>
<td>10-meter cable</td>
<td>M12 female</td>
<td>No connector; open end wires</td>
<td>222288</td>
</tr>
<tr>
<td>10-meter extension cable</td>
<td>M12 male</td>
<td>M12 female</td>
<td>215952</td>
</tr>
<tr>
<td>40-meter cable</td>
<td>No connector; open end wires</td>
<td>No connector; open end wires</td>
<td>217020</td>
</tr>
</tbody>
</table>

If you use the USB RS-232/RS-485 cable for a permanent installation, Vaisala recommends that you use the WSP152 Surge Protector to protect the host PC against surges entering through the USB port.
Installing the USB Cable Driver

Before taking the USB cable into use, you must install the USB driver on your PC. The driver is compatible with Windows 7, Windows 8, and Windows 10.

To install the USB cable driver:

1. Make sure that the USB cable is not connected.
2. Insert the driver memory stick that came with the cable.
3. When Vaisala USB Device Driver Setup Wizard opens, select Next.
4. In the Select Additional Tasks window, select the tasks you want to perform and select Install.
5. Select Display Vaisala USB Device Finder now and select Finish. The driver is started.
6. Plug in the cable.

Remember to use the correct port in the settings of your terminal program. Windows recognizes each individual cable as a different device, and reserves a new COM port.

There is no reason to uninstall the driver for normal use. However, if you wish to remove the driver files and all Vaisala USB cable devices, you can do so by uninstalling the entry for Vaisala USB Instrument Driver from the program manager tool in the Windows Control Panel.
Service Cable Connection

The USB Service Cable has a 4-pin M8 connector for Service Port. The service cable connection is recommended for checking and changing device settings. When making the changes, use the Vaisala Configuration Tool or a standard PC terminal program.

![Service Cable Connection](image)

Figure 36 Service Cable Connection

The USB service cable is included in the Service Pack 2, see Table 41 on page 180. For a picture of the service cable, see Figure 9 on page 24.

When you connect the USB service cable between the service connector and PC USB port, the service port settings are forced automatically to RS-232 / 19200, 8, N, 1, and the main serial port at the M12 connector at the screw terminals is disabled.

1. Use the USB service cable to establish a connection between the USB port of your PC and the M8 service port connector on the bottom plate of the transmitter. See Figure 8 on page 23.

2. Open the Vaisala Configuration Tool, or a terminal program.

3. Select the COM port reserved for the USB cable, and select the following default communication settings:

 19200, 8, N, 1.

4. Use the Vaisala Configuration Tool or a terminal program to make the configuration changes. When working with a terminal program, see Communication Setting Commands on page 78.

5. When removing the service cable, support the transmitter while pulling the 4-pin M8 connector for service port. The connection is tight, and it is possible to change the alignment of the transmitter if you pull too hard.
Connection through M12 Bottom Connector or Screw Terminal

Checking or changing the device settings can be done through the M12 bottom connector or screw terminal.

To do this, you must know the device communication settings, have a suitable cable between the device and the host, and, if needed, use a converter (for example, RS-485/422 to RS-232, if the host is a PC). The table below shows the factory default settings:

Table 17 Default Serial Communication Settings for M12/Screw Terminal Connection

<table>
<thead>
<tr>
<th>Serial Interface</th>
<th>Serial Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDI-12</td>
<td>1200 baud, 7, E, 1</td>
</tr>
<tr>
<td>RS-232 ASCII</td>
<td>19200 baud, 8, N, 1</td>
</tr>
<tr>
<td>RS-485 ASCII</td>
<td>19200 baud, 8, N, 1</td>
</tr>
<tr>
<td>RS-422 ASCII</td>
<td>19200 baud, 8, N, 1</td>
</tr>
<tr>
<td>RS-422 NMEA</td>
<td>4800 baud, 8, N, 1</td>
</tr>
</tbody>
</table>
Communication Setting Commands

NOTE

In this section, the commands to be typed by the user are presented in normal text while the responses of the transmitter are presented in italic.

Checking Current Communication Settings (aXU)

Use this command to request the current communication settings.

Command format in ASCII and NMEA 0183: \texttt{aXU}<cr><lf>

Command format in SDI-12: \texttt{aXXU!}

where

- \texttt{a} = Device address, which can consist of the following characters: 0 (default) ... 9, A ... Z, a ... z.
- \texttt{XU} = Device settings command in ASCII and NMEA 0183
- \texttt{XXU} = Device settings command in SDI-12
- \texttt{<cr><lf>} = Command terminator in ASCII and NMEA 0183
- \texttt{!} = Command terminator in SDI-12

Example response in ASCII and NMEA 0183:

\texttt{aXU,A=a,M=[M],T=[T],C=[C],I=[I],B=[B],D=[D],P=[P],S=[S],L=[L],N=[N],V=[V]<cr><lf>}

Example response in SDI-12:

\texttt{aXXU,A=a,M=[M],T=[T],C=[C],I=[I],B=[B],D=[D],P=[P],S=[S],L=[L],N=[N],V=[V]<cr><lf>}
NOTE
You can add the Id information field in the supervisor data message to provide identifying information in addition to the transmitter address. See Supervisor Message on page 144. The information field is set as part of the factory settings. See General Unit Settings on page 204. You can only modify it with the Vaisala Configuration Tool.

Setting Fields

a = Device address
XU = Device settings command in ASCII and NMEA 0183
XXU = Device settings command in SDI-12
[A] = Address: 0 (default) ... 9, A ... Z, a ... z
[M] = Communication protocol:
 A = ASCII, automatic
 a = ASCII, automatic with CRC
 P = ASCII, polled
 p = ASCII, polled, with CRC
 N = NMEA 0183 v3.0, automatic
 Q = NMEA 0183 v3.0, query (= polled)
 S = SDI-12 v1.3
 R = SDI-12 v1.3 continuous measurement
[T] = Test parameter (for testing use only)
[C] = Serial interface:
 1 = SDI-12
 2 = RS-232
 3 = RS-485
 4 = RS-422
[I] = Automatic repeat interval for Composite data message: 1 ... 3600 s, 0 = no automatic repeat
[B] = Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
[D] = Data bits: 7/8
[P] = Parity:
 O = Odd
 E = Even
 N = None
[S] = Stop bits: 1/2
Example (ASCII and NMEA 0183, device address 0):

0XU<cr><lf>
0XU,A=0,M=P,T=0,C=2,I=0,B=19200,D=8,P=N,S=1,L=25,
N=WXT530,V=1.00<cr><lf>

Example (SDI-12, device address 0):

0XXU!0XXU,A=0,M=S,T=0,C=1,I=0,B=1200,D=7,P=E,S=1,L=25,
N=WXT530,V=1.00<cr><lf>

[**L**] = RS-485 line delay: 0 ... 10000 ms
Defines the delay between the last character of the query and the first character of the response message from the transmitter. During the delay, the transmitter is disabled. Effective in ASCII, polled and NMEA 0183 query protocols. Effective when RS-485 is selected (C = 3).

[N] = Name of the device: WXT536 (read-only)

[V] = Software version: for example, 1.00 (read-only)

[H] = Parameter locking
0 = Parameters can be changed
1 = Parameters locked. Vaisala recommends that you set this parameter to 1 after you have configuration. This prevents accidental changes, for instance, in RS-485 use when there is interference.

<cr><lf> = Response terminator

NOTE

There are two SDI-12 modes available for providing the functionality of the SDI-12 v1.3 standard.

The lowest power consumption is achieved with the Native SDI-12 mode (**aXU,M=S**), as it makes measurements and outputs data only on request.

In the continuous SDI-12 mode (**aXU,M=R**) internal measurements are made at a user-configurable update interval. The data is outputted on request. See Chapter 8 Sensor and Data Message Settings, on page 127.
Changing the Communication Settings (aXU)

Use this command to change communication settings. For details on the available values, see the examples below and Setting Fields on page 79.

Command format in ASCII and NMEA 0183:

```
aXU,A=x,M=x,C=x,I=x,B=x,D=x,P=x,S=x,L=x<cr><lf>
```

Command format in SDI-12:

```
aXXU,A=x,M=x,C=x,I=x,B=x,D=x,P=x,S=x,L=x!
```

where

- **A, M, C, I, B, D, P, S, L** = The communication setting fields, see Setting Fields on page 79.
- **x** = Input value for the setting
- **<cr><lf>** = Command terminator in ASCII and NMEA 0183
- **!** = Command terminator in SDI-12

NOTE
When changing the serial interface and communication protocol, note the following:

Each serial interface requires its specific wiring and/or jumper settings described in Chapter 5 Wiring and Power Management, on page 53.

Change first the serial interface field C and then the communication protocol field M.

Changing the serial interface to SDI-12 (C=1) automatically changes the baud settings to 1200, 7, E, 1 and the communication protocol to SDI-12 (M=S).

NOTE
Reset the transmitter to validate the changes of communication parameters by disconnecting the service cable or using the Reset (aXZ) command. See Reset (aXZ) on page 84.
Example (ASCII and NMEA 0183, device address 0):

Changing the device address from 0 to 1:

0XU,A=1<cr><lf>

1XU,A=1<cr><lf>

Checking the changed settings:

1XU<cr><lf>

1XU,A=1,M=P,T=1,C=2,I=0,B=19200,D=8,P=N,S=1,L=25,
N=WXT530V=1.00<cr><lf>

Example (ASCII, device address 0):

Changing RS-232 serial interface with ASCII, polled communication protocol and baud settings 19200, 8, N, 1 to RS-485 serial interface with ASCII, automatic protocol and baud settings 9600, 8, N, 1.

Checking the settings:

0XU<cr><lf>

0XU,A=0,M=P,C=2,I=0,B=19200,D=8,P=N,S=1,L=25,N=WXT530,
V=1.00<cr><lf>

Changing several settings with one command:

0XU,M=A,C=3,B=9600<cr><lf>

Checking the changed settings:

0XU<cr><lf>

0XU,A=0,M=A,T=1,C=3,I=0,B=9600,D=8,P=N,S=1,L=25,
N=WXT530,V=1.00<cr><lf>

NOTE: You can change several parameters in the same command as long as the command length does not exceed 32 characters (including command terminator characters ! or <cr><lf>). You do not have to type setting fields you do not wish to change.
CHAPTER 7
RETRIEVING DATA MESSAGES

This chapter presents the general and data message commands.

Each communication protocol has its own section for data message commands.

For details on changing the message parameters, units, and other settings, see Chapter 8 Sensor and Data Message Settings, on page 127.

NOTE

Type commands in CAPITAL letters.

NOTE

The parameter order in messages is as follows:

Wind (M1): Dn Dm Dx Sn Sm Sx
PTU (M2): Ta Tp Ua Pa
Rain (M3): Rc Rd Ri Hc Hd Hi Rp Hp
Supv (M5): Th Vh Vs Vr Id
Comp (M): Wind PTU Rain Supv (parameters in above order)

The order of the parameters is fixed, but you can exclude any parameter from the list when configuring the transmitter.
General Commands

With general commands you can reset the transmitter.

NOTE
If error messaging is disabled, the general commands given in ASCII and NMEA formats do not work. See Supervisor Message on page 144.

Reset (aXZ)

This command performs software reset on the device.

Command format in ASCII and NMEA 0183: aXZ
<lf>

Command format in SDI-12: aXZ!

where
a = Device address
XZ = Reset command

<lf> = Command terminator in ASCII and NMEA 0183
! = Command terminator in SDI-12

The response depends on the communication protocol as shown in the examples.

Example (ASCII):

0XZ
<lf>

0TX,Start-up
<lf>

Example (SDI-12):

0XZ!0
<lf> (=device address)
Example (NMEA 0183):
0XZ<cr><lf>
$WITXT,01,01,07,Start-up*29

Precipitation Counter Reset (aXZRU)

This command resets the rain and hail accumulation and duration parameters Rc, Rd, Hc, and Hd.

Command format in ASCII and NMEA 0183: aXZRU<cr><lf>
Command format in SDI-12: aXZRU!

where
a = Device address
XZRU = Precipitation counter reset command
<cr><lf> = Command terminator in ASCII and NMEA 0183
! = Command terminator in SDI-12

Example (ASCII):
0XZRU<cr><lf>
0TX,Rain reset<cr><lf>

Example (SDI-12):
0XZRU!0<cr><lf> (= device address)

Example (NMEA 0183):
0XZRU<cr><lf>
$WITXT,01,01,10,Rain reset*26<cr><lf>
Precipitation Intensity Reset (aXZRI)

This command resets the rain and hail intensity parameters Ri, Rp, Hi, and Hp.

Command format in ASCII and NMEA 0183: \texttt{aXZRI<cr><lf>}

Command format in SDI-12: \texttt{aXZRI!}

\begin{itemize}
\item \texttt{a} = Device address
\item \texttt{XZRI} = Precipitation intensity reset command
\item \texttt{<cr><lf>} = Command terminator in ASCII and NMEA 0183
\item \texttt{!} = Command terminator in SDI-12
\end{itemize}

\begin{itemize}
\item \texttt{aXZRI} = Precipitation intensity reset command
\item \texttt{<cr><lf>} = Command terminator in ASCII and NMEA 0183
\item \texttt{!} = Command terminator in SDI-12
\end{itemize}

\textbf{NOTE}

The precipitation counter and precipitation intensity parameters are reset also when the supply voltage is disconnected, the command aXZ is issued, precipitation counter reset mode is changed, or when the precipitation/surface hits units are changed.

\textbf{Example (ASCII)}:

\texttt{0XZRI<cr><lf>}

\texttt{0TX,Inty reset<cr><lf>}

\textbf{Example (SDI-12)}:

\texttt{0XZRI!0<cr><lf>} (= device address)

\textbf{Example (NMEA 0183)}:

\texttt{0XZRI<cr><lf>}

\texttt{$SWITXT,01,01,11,Inty reset*39<cr><lf>$}
Measurement Reset (aXZM)

This command interrupts all ongoing measurements except rain measurement and restarts them.

Command format in ASCII and NMEA 0183: \textbf{aXZM}<cr><lf>

Command format in SDI-12: \textbf{aXZM}!

where
\begin{align*}
a & = \text{Device address} \\
XZM & = \text{Measurement break command} \\
<\text{cr}><\text{lf}> & = \text{Command terminator in ASCII and NMEA 0183} \\
! & = \text{Command terminator in SDI-12}
\end{align*}

Example (ASCII):

\begin{verbatim}
0XZM<cr><lf>
0TX,Measurement reset<cr><lf>
\end{verbatim}

Example (SDI-12):

\begin{verbatim}
0XZM!0 (= device address)
\end{verbatim}

Example (NMEA 0183):

\begin{verbatim}
0XZM<cr><lf>
$WITXT,01,01,09,Measurement reset*50<cr><lf>
\end{verbatim}
ASCII Protocol

This section lists the data commands and data message formats for the ASCII communication protocols.

Abbreviations and Units

Table 18 Abbreviations and Units

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Name</th>
<th>Unit</th>
<th>Status¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sn</td>
<td>Wind speed minimum</td>
<td>m/s, km/h, mph, knots</td>
<td>#, M, K, S, N</td>
</tr>
<tr>
<td>Sm</td>
<td>Wind speed average</td>
<td>m/s, km/h, mph, knots</td>
<td>#, M, K, S, N</td>
</tr>
<tr>
<td>Sx</td>
<td>Wind speed maximum</td>
<td>m/s, km/h, mph, knots</td>
<td>#, M, K, S, N</td>
</tr>
<tr>
<td>Dn</td>
<td>Wind direction minimum</td>
<td>deg</td>
<td>#, D</td>
</tr>
<tr>
<td>Dm</td>
<td>Wind direction average</td>
<td>deg</td>
<td>#, D</td>
</tr>
<tr>
<td>Dx</td>
<td>Wind direction maximum</td>
<td>deg</td>
<td>#, D</td>
</tr>
<tr>
<td>Pa</td>
<td>Air pressure</td>
<td>hPa, Pa, bar, mmHg, inHg</td>
<td>#, H, P, B, M, I</td>
</tr>
<tr>
<td>Ta</td>
<td>Air temperature</td>
<td>°C, °F</td>
<td>#, C, F</td>
</tr>
<tr>
<td>Tp</td>
<td>Internal temperature</td>
<td>°C, °F</td>
<td>#, C, F</td>
</tr>
<tr>
<td>Ua</td>
<td>Relative humidity</td>
<td>%RH</td>
<td>#, P</td>
</tr>
<tr>
<td>Rc</td>
<td>Rain accumulation</td>
<td>mm, in</td>
<td>#, M, I</td>
</tr>
<tr>
<td>Rd</td>
<td>Rain duration</td>
<td>s</td>
<td>#, S</td>
</tr>
<tr>
<td>Ri</td>
<td>Rain intensity</td>
<td>mm/h, in/h</td>
<td>#, M, I</td>
</tr>
<tr>
<td>Rp</td>
<td>Rain peak intensity</td>
<td>mm/h, in/h</td>
<td>#, M, I</td>
</tr>
<tr>
<td>Hc</td>
<td>Hail accumulation</td>
<td>hits/cm², hits/in², hits</td>
<td>#, M, I, H</td>
</tr>
<tr>
<td>Hd</td>
<td>Hail duration</td>
<td>s</td>
<td>#, S</td>
</tr>
<tr>
<td>Hi</td>
<td>Hail intensity</td>
<td>hits/cm²h, hits/in²h, hits/h</td>
<td>#, M, I, H</td>
</tr>
<tr>
<td>Hp</td>
<td>Hail peak intensity</td>
<td>hits/cm²h, hits/in²h, hits/h</td>
<td>#, M, I, H</td>
</tr>
<tr>
<td>Th</td>
<td>Heating temperature</td>
<td>°C, °F</td>
<td>#, C, F</td>
</tr>
<tr>
<td>Vh</td>
<td>Heating voltage</td>
<td>V</td>
<td>#, N, V, W, F²</td>
</tr>
<tr>
<td>Vs</td>
<td>Supply voltage</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Vr</td>
<td>3.5 V ref. voltage</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>Id</td>
<td>Information field</td>
<td>alphanumeric</td>
<td></td>
</tr>
</tbody>
</table>

¹. The letters in the status field indicate the Unit, the # character indicates invalid data.

². For heating # = heating option is not available (has not been ordered).
 N = heating option is available but have been disabled by user or the heating temperature is over the high control limit.
 V = heating is on at 50% duty cycle and the heating temperature is between the high and middle control limits.
 W = heating is on at 100% duty cycle and the heating temperature is between the low and middle control limits.
 F = heating is on at 50% duty cycle and the heating temperature is below the low control limit.
Device Address (?)

This command queries the address of the device on the bus.

Command format: ?<cr><lf>

where
?
 = Device address query command
<cr><lf>
 = Command terminator

The response:

b<cr><lf>

where
b
 = Device address (default = 0)
<cr><lf>
 = Response terminator.

Example:

?<cr><lf>

0<cr><lf>

If more than one transmitter is connected to the bus, see Appendix A Networking, on page 187.

For information on changing the device address, see Changing the Communication Settings (aXU) on page 81.
Acknowledge Active Command (a)

This command checks that a device is responding to a data recorder or another device by asking a device to acknowledge its presence on the bus.

Command format: a\cr\lf

where

a = Device address
<cr><lf> = Command terminator

The response:
a\cr\lf

where

a = Device address
<cr><lf> = Response terminator

Example:
0\cr\lf

W0\cr\lf

Wind Data Message (aR1)

This command requests the wind data message.

Command format: aR1\cr\lf

where

a = Device address
R1 = Wind message query command
<cr><lf> = Command terminator
Example of the response (the parameter set is configurable):

0R1,Dn=236D,Dm=283D,Dx=031D,Sn=0.0M,Sm=1.0M,
Sx=2.2M<cr><lf>

where
a = Device address
R1 = Wind message query command
Dn = Wind direction minimum (D = degrees)
Dm = Wind direction average (D = degrees)
Dx = Wind direction maximum (D = degrees)
Sn = Wind speed minimum (M = m/s)
Sm = Wind speed average (M = m/s)
Sx = Wind speed maximum (M = m/s)
<cr><lf> = Response terminator

For information on changing the parameters and units in the response message, see Wind Sensor on page 127.

Pressure, Temperature and Humidity Data Message (aR2)

This command requests a pressure, temperature, and humidity data message.

Command format: aR2<cr><lf>

where
a = Device address
R2 = Pressure, temperature and humidity message query command
<cr><lf> = Command terminator
Example of the response (the parameter set is configurable):

\[0R2,Ta=23.6C,Ua=14.2P,Pa=1026.6H<cr><lf>\]

where

\[a\] = Device address
\[R2\] = Pressure, temperature and humidity query command
\[Ta\] = Air temperature (C = °C)
\[Ua\] = Relative humidity (P = % RH)
\[Pa\] = Air pressure (H = hPa)
\[<cr><lf>\] = Response terminator

For information on changing the parameters and units in the response message, see Pressure, Temperature, and Humidity Sensors on page 134.

Precipitation Data Message (aR3)

This command requests the precipitation data message.

Command format: \[aR3<cr><lf>\]

where

\[a\] = Device address
\[R3\] = Precipitation message query command
\[<cr><lf>\] = Command terminator
Example of the response (the parameter set is configurable):

```
0R3,Rc=0.0M,Rd=0s,Ri=0.0M,Hc=0.0M,Hd=0s,Hi=0.0M,Rp=0.0M,Hp=0.0M<cr><lf>
```

where

- `a` = Device address
- `R3` = Precipitation message query command
- `Rc` = Rain accumulation (M = mm)
- `Rd` = Rain duration (s = s)
- `Ri` = Rain intensity (M = mm/h)
- `Hc` = Hail accumulation (M = hits/cm²)
- `Hd` = Hail duration (s = s)
- `Hi` = Hail intensity (M = hits/cm²/h)
- `Rp` = Rain peak intensity (M = mm/h)
- `Hp` = Hail peak intensity (M = hits/cm²/h)

For information on changing the parameters or the units in the response message, see Precipitation Sensor on page 138.

Supervisor Data Message (aR5)

This command requests a supervisor data message containing self-check parameters of the heating system and power supply voltage.

Command format: `aR5<cr><lf>

where

- `a` = Device address
- `R5` = Supervisor message query command

For information on changing the parameters or the units in the response message, see Precipitation Sensor on page 138.
Example of the response (the parameter set is configurable):

\[0R5, Th=25.9\,^\circ C, Vh=12.0\,N, Vs=15.2\,V, Vr=3.475\,V, Id=HEL___\langle\text{cr}\rangle\langle\text{lf}\rangle\]

where

- \(a\) = Device address
- \(R5\) = Supervisor message query command
- \(Th\) = Heating temperature (\(\circ C\))
- \(Vh\) = Heating voltage (\(N = \text{heating is off}\))
- \(Vs\) = Supply voltage (\(V = V\))
- \(Vr\) = 3.5 \(V\) reference voltage (\(V = V\))
- \(<\text{cr}>\langle\text{lf}\rangle\) = Response terminator
- \(Id\) = Information field

For information on changing the parameters and units in the response message, see Supervisor Message on page 144.

The content of the parameter "Id" is a text string which you can modify with the Vaisala Configuration Tool. The field can include customer-specific, additional information. For more information on changing the settings, see the Vaisala Configuration Tool online help for the Info field in the Device Settings window.
Combined Data Message (aR)

This command requests all individual messages aR_1, aR_2, aR_3, and aR_5 with one command.

Command format: $aR<\text{cr}><\text{lf}>

where

- a = Device address (default = 0)
- R = Combined message query command
- $<\text{cr}><\text{lf}>$ = Command terminator

Example of the response:

0R1,Dm=027D,Sm=0.1M<$cr><lf>
0R2,Ta=74.6F,Ua=14.7P,Pa=1012.9H<$cr><lf>
0R3,Rc=0.10M,Rd=2380s,Ri=0.0M,Hc=0.0M,Hd=0s,Hi=0.0M<$cr><lf>
0R5,Th=76.1F,Vh=11.5N,Vs=11.5V,Vr=3.510V,Id=HEL___$<cr><lf>

Composite Data Message Query (aR0)

This command requests a combined data message with user configurable set of wind, pressure, temperature, humidity, precipitation, and supervisor data.

Command format: $aR0<\text{cr}><\text{lf}>

where

- a = Device address
- $R0$ = Composite data message query command
- $<\text{cr}><\text{lf}>$ = Command terminator
Example of the response (you can select the parameters included from the full parameter set of the commands aR1, aR2, aR3, and aR5):

0R0,Dx=005D,Sx=2.8M,Ta=23.0C,Us=30.0P,Pa=1028.2H,
Rc=0.00M,Rd=10s,Th=23.6C<cr><lf>

For information on selecting the parameter set in the response message, see Chapter 8 Sensor and Data Message Settings, on page 127.

Polling with CRC

Use the same data query commands as in the previous sections but type the first letter of the command in lower case and add a correct three-character CRC before the command terminator. The response also contains a CRC. For more information on CRC computation, see Appendix C CRC-16 Computation, on page 199.

Requesting a wind data message with a CRC:

Command format: ar1xxx<cr><lf>

where

a = Device address
r1 = Wind message query command
xxx = Three-character CRC for ar1 command
<cr><lf> = Command terminator

Example of the response (the parameter set is configurable):

0r1,Dn=236D,Dm=283D,Dx=031D,Sn=0.0M,Sm=1.0M,Sx=2.2MLFj
<cr><lf>

where the three characters before <cr><lf> are the CRC for the response.

NOTE

To request the correct CRC for each command by typing the command with an arbitrary three-character CRC.
Example of asking the CRC for the wind data message query ar1:

Command format: ar1yyy<cr><lf>

where
a = Device address
r1 = Wind message query command
yyy = Arbitrary three-character CRC
<cr><lf> = Command terminator

Response:
atX,Use chksum GoeIU~<cr><lf>

where
a = Device address
tX,Use chksum = Text prompt
Goe = Correct three-character CRC for the ar1 command
IU~ = Three-character CRC for the response message
<cr><lf> = Response terminator

Example of the other data query commands with CRC (when the device address is 0):

Pressure, humidity and temperature message query = 0r2Gje<cr><lf>
Precipitation query = 0r3Kid<cr><lf>
Supervisor query = 0r5Kcd<cr><lf>
Combined message query = 0rBVT<cr><lf>
Composite data message query = 0r0Kld<cr><lf>

In every case the response contains a three-character CRC before the <cr><lf>.

For information on selecting the parameters to include in the response messages, changing the units and making other configurations of the measured parameters, see Chapter 8 Sensor and Data Message Settings, on page 127.
Automatic Mode

When the automatic ASCII protocol is selected the transmitter sends data messages at user configurable update intervals.

The message structure is the same as with data query commands **aR1**, **aR2**, **aR3**, and **aR5**. You can choose an individual update interval for each sensor. See Chapter 8 Sensor and Data Message Settings, on page 127.

Example:

0R1,Dm=027D,Sm=0.1M<cr><lf>
0R2,Ta=74.6F,Ua=14.7P,Pa=1012.9H<cr><lf>
0R3,Rc=0.10M,Rd=2380s,Ri=0.0M,Hc=0.0M,Hd=0s,Hi=0.0M<cr><lf>
0R5,Th=76.1F,Vh=11.5N,Vs=11.5V,Vr=3.510V<cr><lf>

Example (with CRC):

0r1,Sn=0.1M,Sm=0.1M,Sx=0.1MGOG<cr><lf>
0r2,Ta=22.7C,Ua=55.5P,Pa=1004.7H@Fn<cr><lf>
0r3,Rc=0.00M,Rd=0s,Ri=0.0Mllm<cr><lf>
0r5,Th=25.0C,Vh=10.6#,Vs=10.8V,Vr=3.369VOJT<cr><lf>

NOTE

Stop the automatic output by changing the communication protocol to polled mode (**aXU,M=P**). You can also use polling commands **aR1**, **aR2**, **aR3**, and **aR5** in ASCII automatic protocol for requesting data.
Automatic Composite Data Message (aR0)

When automatic composite data messaging is selected, the transmitter sends composite data messages at user-configurable intervals. The message structure is the same as with the composite data query command aR0 and contains a user configurable set of wind, pressure, temperature, humidity, precipitation, and supervisor data.

Example of the response (you can select the parameters included from the full parameter set of the commands aR1, aR2, aR3, and aR5):

0R0,Dx=005D,Sx=2.8M,Ta=23.0C,Ua=30.0P,Pa=1028.2H,
Hd=0.00M,Rd=10s,Th=23.6C<cr><lf>

For selecting the parameter set in the response message, see Chapter 8 Sensor and Data Message Settings, on page 127.

Automatic composite data messaging is a concurrent, not an alternate mode to either the polled or automatic modes.
SDI-12 Protocol

There are two modes available for providing the functionality of the SDI-12 v1.3 standard.

The lowest power consumption is achieved with the Native SDI-12 mode \((aXU, M=S)\), as it makes measurements and outputs data only when requested. In this mode all the commands presented in this chapter are available except those for the continuous measurement.

In the Continuous mode \((aXU,M=R)\) measurements are made at user-configurable update intervals. The data is outputted on request. In this mode all the commands presented in this chapter are available.

For changing the message parameters, units and other settings, see Chapter 8 Sensor and Data Message Settings, on page 127.

In the Native SDI-12 mode \((aXU,M=S)\) the transmitter is in idle state most of the time (power consumption < 1 mW). More power is consumed only during the measurements and data transmit requested by the host device.

In particular, wind measurement typically consumes 60 mW average power (with 4 Hz sampling rate), throughout the averaging period. In the Continuous mode \((aXU=M,R)\) the power consumption is determined by the internal update intervals of the sensors and wind averaging time. These have certain limits, so very long measurement intervals cannot be achieved with this mode. Also the power consumption between the measurements is about three times that of the Native mode.

Address Query Command (?)

This command queries the address of the device on the bus.

If more than one sensor is connected to the bus, they all respond, causing a bus collision.

Command format: ?!

where

? = Address query command
!

= Command terminator
The response:

\[a<\text{cr}><\text{lf}> \]

where

\[a = \text{Device address (default = 0)} \]
\[<\text{cr}><\text{lf}> = \text{Response terminator} \]

Example (device address 0):

\[?!0<\text{cr}><\text{lf}> \]

Acknowledge Active Command (a)

This command checks that a device responds to a data recorder or another SDI-12 device. It asks device to acknowledge its presence on the SDI-12 bus.

Command format: \texttt{a!}

where

\[a = \text{Device address} \]
\[! = \text{Command terminator} \]

The response:

\[a<\text{cr}><\text{lf}> \]

where

\[a = \text{Device address} \]
\[<\text{cr}><\text{lf}> = \text{Response terminator} \]

Example:

\[0!0<\text{cr}><\text{lf}> \]
Change Address Command (aAb)

This command changes the device address. After the command has been issued and responded to, the sensor is not required to respond to another command for one second time in order to ensure writing the new address to the non-volatile memory.

Command format: **aAb!**

where

- **a** = Device address
- **A** = Change address command
- **b** = Address to change to
- **!** = Command terminator

The response:

`b<cr><lf>`

where

- **b** = Device address = the new address (or the original address, if the device is unable to change it)
- `<cr><lf>` = Response terminator

Example (changing address from 0 to 3):

0A3!3<cr><lf>

Send Identification Command (aI)

This command queries the device for the SDI-12 compatibility level, model number, firmware version, and serial number.
Command format: \texttt{aI!}

where
\begin{itemize}
 \item \texttt{a} = Device address
 \item \texttt{I} = Send identification command
 \item \texttt{!} = Command terminator
\end{itemize}

The response:

\texttt{a13ccccccccmmmmmvvvvxxxxxxxx<cr><lf>}

where
\begin{itemize}
 \item \texttt{a} = Device address
 \item \texttt{13} = The SDI-12 version number, indicating SDI-12 version compatibility; for example, version 1.3 is encoded as 13
 \item \texttt{cccccccc} = 8-character vendor identification Vaisala_
 \item \texttt{mmmmmm} = 6 characters specifying the sensor model number
 \item \texttt{vvv} = 3 characters specifying the firmware version
 \item \texttt{xxxxxxxx} = 8-character serial number
 \item \texttt{<cr><lf>} = Response terminator
\end{itemize}

Example:

\texttt{01!013VAISALA_WXT530103Y2630000<cr><lf>}

\section*{Start Measurement Command (aM)}

This command asks the device to make a measurement. The measured data is not sent automatically. You must request it with the Send data command \texttt{aD}.

The host device is not allowed to send any commands to other devices on the bus until the measurement is completed.

When several devices are connected to the same bus and simultaneous measurements from the many devices are needed, use start concurrent measurement \texttt{aC} or start concurrent measurement with CRC \texttt{aCC}, see the next sections.
See Examples of aM, aC and aD Commands on page 108.

Command format: **aMx!**

where

- **a** = Device address
- **M** = Start measurement command
- **x** = The desired sensor to make the measurement
 - 1 = Wind
 - 2 = Temperature, humidity, pressure
 - 3 = Precipitation
 - 5 = Supervisor

If **x** is left out, the query refers to the combined data message used for requesting data from several sensors with one command. See Examples of aM, aC and aD Commands on page 108.

! = Command terminator

The response is sent in two parts:

The response part one:

```
atttn<cr><lf>
```

The response part two (indicates that the data is ready to be requested):

```
a<cr><lf>
```

where

- **a** = Device address
- **ttt** = The measurement completing time in seconds
- **n** = The number of the measured parameters available
 - (maximum number is 9)
- **<cr><lf>** = Response terminator

NOTE

For information on changing the message parameters, units and other settings, see Chapter 8 Sensor and Data Message Settings, on page 127.
When the measurement takes less than one second, part two of the response is not sent. This is the case in the precipitation measurement aM3.

The maximum number of parameters that can be measured with aM and aMC commands is nine. If more parameters must be measured, use Start concurrent measurement commands aC and aCC (for which the maximum number of parameters to be measured is 20). See Start Concurrent Measurement (aC), on page 105 and Start Concurrent Measurement with CRC (aCC), on page 107.

Start Measurement Command with CRC (aMC)

Command format: aMCx!

This command asks the device to make a measurement and a three-character CRC is added to the response data strings before <cr><lf>.

To request the measured data, use the Send data command aD, see Send Data Command (aD), on page 107.

Start Concurrent Measurement (aC)

Use this command when there are several devices on the same bus and simultaneous measurements are needed from the devices, or if more than nine (9) measurement parameters are requested from a single device.

The measured data is not sent automatically. You must request it with the Send data command aD. See Examples of aM, aC and aD Commands on page 108.
Command format: \texttt{aCx!}

where

\begin{tabular}{ll}
\texttt{a} & Device address \\
\texttt{C} & Start concurrent measurement command \\
\texttt{x} & The desired measurement \\
1 & Wind \\
2 & Temperature, humidity, and pressure \\
3 & Precipitation \\
5 & Supervisor \\
\end{tabular}

If \texttt{x} is left out, the query refers to combined data message in which the user can request data from several sensors with just one command. See the examples below.

\texttt{!} & Command terminator

The response:

\texttt{atttn<cr><lf>}

where

\begin{tabular}{ll}
\texttt{a} & Device address \\
\texttt{ttt} & The measurement completing time in seconds \\
\texttt{nn} & The number of the measured parameters available (maximum number is 20) \\
\end{tabular}

\texttt{<cr><lf>} & Response terminator

\textbf{NOTE}

For information on changing the message parameters, units and other settings, see to \textit{Chapter 8 Sensor and Data Message Settings, on page 127}.
Start Concurrent Measurement with CRC (aCC)

Command format: aCCx!

Use this command when there are several devices on the same bus and simultaneous measurements are needed from the devices but a three-character CRC is added to the response data strings before <cr><lf>.

To request the measured data, use the Send data command aD.

Send Data Command (aD)

Use this command to request the measured data from the device. See Examples of aM, aC and aD Commands on page 108.

NOTE

Start measurement command indicates the number of parameters available.
The number of the parameters that can be included in a single message depends on the number of characters in the data fields. If not all the parameters are retrieved in a single response message, repeat the Send data commands until all the data is obtained.

Command format: aDx!

where

a = Device address
D = Send data command
x = The order of consecutive Send data commands.
 Make sure the first Send data command is addressed with x=0. If all the parameters are not retrieved, send the next Send data command with x=1 and so on.
The maximum value for x is 9. See Examples of aM, aC and aD Commands on page 108.
!
 = Command terminator
The response:

\[a+<\text{data fields}><cr><lf> \]

where

\[a \quad = \quad \text{Device address} \]

\[<\text{data fields}> \quad = \quad \text{The measured parameters in selected units, separated with '+'} \text{ marks (or ' -' marks in case of negative parameter values).} \]

\[<cr><lf> \quad = \quad \text{Response terminator} \]

NOTE

A \[aD0 \] command can also be used to break the measurement in progress started with commands \[aM, aMC, aC, \text{ or } aCC. \]

NOTE

In SDI-12 v1.3 Continuous measurement mode (\[aXU, M=R \]) the sensor makes measurements at configurable update intervals. The \[aD \] command following the \[aM, aMC, aC, \text{ or } aCC \] command always returns the latest updated data. Thus in \[aXU, M=R \] mode issuing consecutive \[aD \] commands can result in different data strings if the value(s) happen to be updated between the commands.

Examples of \[aM, aC \text{ and } aD \] Commands

NOTE

The parameter order in messages is as follows:

- **Wind (M1):** \(Dn \ Dm \ Dx \ Sn \ Sm \ Sx \)
- **PTU (M2):** \(Ta \ Tp \ Ua \ Pa \)
- **Rain (M3):** \(Rc \ Rd \ Ri \ Hc \ Hd \ Hi \ Rp \ Hp \)
- **Supv (M5):** \(Th \ Vh \ Vs \ Vr \ Id \)
- **Comp (M):** Wind PTU Rain Supv (parameters in above order)

The order of the parameters is fixed, but you can exclude any parameter from the list when configuring the transmitter.
The device address is 0 in all examples.

Example 1:

Start a wind measurement and request the data (all six wind parameters are enabled in the message):

```
0M1!00036<cr><lf>
```

(measurement ready in 3 seconds and 6 parameters available)

```
0<cr><lf>
```

(measurement completed)

```
0D0!0+339+018+030+0.1+0.1+0.1<cr><lf>
```

Example 2:

Start a concurrent pressure, humidity and temperature measurement and request the data:

```
0C2!000503<cr><lf>
```

(measurement ready in 5 seconds and 3 parameters available, for aC command device address not sent as a sign of a completed measurement)

```
0D0!0+23.6+29.5+1009.5<cr><lf>
```

Example 3:

Start a precipitation measurement and request the data:

```
0M3!00006<cr><lf>
```

(6 parameters available immediately, thus the device address is not sent)

```
0D0!0+0.15+20+0.0+0.0+0+0.0<cr><lf>
```

Example 4:

Start a supervisor measurement with CRC and request the data:

```
0MC5!00014<cr><lf>
```

(measurement ready in one second and 4 parameters available)

```
0<cr><lf>
```

(measurement completed)

```
0D0!0+34.3+10.5+10.7+3.366DpD<cr><lf>
```
Example 5:

Start a composite measurement and request the data. The configuration of the parameter set is such that nine (9) parameters are available. Thus start measurement command aM can be used. Due to the 35-character limit in response message, aD0 returns only six parameters. The remaining parameters are retrieved with aD1.

0M!00059<cr><lf> (measurement ready in 5 seconds and 9 parameters available)

0<cr><lf> (measurement completed)

0D0!0+340+0.1+23.7+27.9+1009.3+0.15<cr><lf>

0D1!0+0.0+0+0.0<cr><lf>

Example 6:

Start a composite measurement and request the data. The configuration of the parameter set is such that 20 parameters are available. Thus Start concurrent measurement command aC is used. Due to the 75-character limit in response message, aD0 returns only 14 parameters. The remaining parameters are retrieved with aD1.

0C!000520<cr><lf> (measurement ready in 5 seconds and 20 parameters available, for aC command device address not sent as a sign of a completed measurement))

0D0!0+069+079+084+0.1+0.6+1.1+21.1+21.7+32.0+1000.3+0.02+20+0.0+0.0<cr><lf>

0D1!0+0+0.0+1.3+0.0+0+77.1<cr><lf>

Continuous Measurement (aR)

The device can be configured so that all the parameters can be requested instantly with the command aR instead of the two-phase request procedure of commands aM, aMC, aC, aCC + aD.

In this case the obtained parameter values are those from the latest internal updating. For details on setting update intervals, see Chapter 8 Sensor and Data Message Settings, on page 127).
Chapter 7 __ Retrieving Data Messages

NOTE

For using Continuous measurement commands for all WXT530 series parameters (wind, PTU, precipitation, and supervisor) the select the respective protocol (aXU,M=R).

The M=S selection requires use of aM, aMC, aC, aCC + aD commands, only the precipitation data can be retrieved continuously (using aR3 command).

Command format: aRx!

where

a = Device address
R = Start continuous measurement command:
 x = The desired sensor to make the measurement:
 1 = Wind
 2 = Temperature, humidity, pressure
 3 = Precipitation
 5 = Supervisor

If x is left out, the query refers to the combined data message used for requesting data from several sensors with just one command.

! = Command terminator

The response:

a+<data fields><cr><lf>

where

a = Device address
<data fields> = The measured parameters in selected units, separated with ‘+’ marks (or ‘-’ marks in case of negative parameter values). The maximum number of parameters to be measured with one request is 15.

<cr><lf> = Response terminator
Examples (device address 0):

0R1!0+323+331+351+0.0+0.4+3.0<cr><lf>
0R3!0+0.15+20+0.0+0.0+0.0+0.0+0.0+0.0<cr><lf>
0R!0+178+288+001+15.5+27.4+38.5+23.9+35.0+1002.1+0.00+0+0.0+23.8<cr><lf>

Continuous Measurement with CRC (aRC)

Command format: aRCx!

The device can be configured so that all the parameters can be requested instantly with the command aRC but a three-character CRC is added to the response data strings before <cr><lf>.

Example (device address 0):

0RC3!0+0.04+10+14.8+0.0+0+0.0INy
NMEA 0183 V3.0 Protocol

This section lists the data query commands and data message formats for the NMEA 0183 v3.0 query and automatic protocols.

For changing the message parameters, units and other settings, see Chapter 8 Sensor and Data Message Settings, on page 127.

A two-character checksum (CRC) field is transmitted in all data request sentences. For definition of the CRC, see Appendix C CRC-16 Computation, on page 199.

Device Address (?)

This command queries the address of the device on the bus.

Command format: ?<cr><lf>

where

? = Device address query command
<cr><lf> = Command terminator

The response:

b<cr><lf>

where

b = Device address (default = 0)
<cr><lf> = Response terminator.

Example:

<?<cr><lf>

0<cr><lf>

If more than one transmitter is connected to the bus, see Appendix A Networking, on page 187.

For information on changing the device address, see Changing the Communication Settings (aXU) on page 81.
Acknowledge Active Command (a)

This command checks that a device responds to a data recorder or another device. It asks a sensor to acknowledge its presence on the bus.

Command format: \texttt{a<cr><lf>}

where

\begin{align*}
\text{a} & = \text{Device address} \\
\text{<cr><lf>} & = \text{Command terminator}
\end{align*}

The response:

\texttt{a<cr><lf>}

where

\begin{align*}
\text{a} & = \text{Device address} \\
\text{<cr><lf>} & = \text{Response terminator}
\end{align*}

Example:

\begin{align*}
0<cr><lf> \\
0<cr><lf>
\end{align*}

MWV Wind Speed and Direction Query

Use a MWV query command to request the wind speed and direction data. To use MWV query the NMEA Wind formatter parameter in the wind sensor settings must be set to W. See Wind Sensor on page 127.

The MWV command only queries only wind speed and direction average values. For details on obtaining minimum and maximum data for speed and direction, see XDR Transducer Measurement Query on page 116.
Command format: $--WIQ,MWV*hh<cr><lf>$

where

$ = Start of the message
-- = Device identifier of the requester
WI = Device type identifier (WI = weather instrument)
Q = Defines the message as Query
MWV = Wind speed and direction query command
* = Checksum delimiter
hh = Two-character checksum for the query command.
<cr><lf> = Command terminator

The response format:

$WIMWV,x.x,R,y.y,M,A*hh<cr><lf>$

where

$ = Start of the message
WI = Talker identifier (WI = weather instrument)
MWV = Wind speed and direction response identifier
x.x = Wind direction value1
R = Wind direction unit (R = relative)
y.y = Wind speed value
M = Wind speed unit (m/s)
A = Data status: A = valid, V = Invalid
* = Checksum delimiter
hh = Two-character checksum for the response
<cr><lf> = Response terminator

1. Wind direction is given in relation to the devices north-south axis. An offset value to the measured direction can be set, see Chapter 8.

The checksum typed in the query depends on the device identifier characters. To find the correct checksum in the WXT530 series transmitters, type any three characters after the $--WIQ,MWV$ command.
Example:

Typing the command $--WIQ,MWVxxx<cr><lf> (xxx arbitrary characters) the transmitter responds

$WITXT,01,01,08,Use chksum 2F*72<cr><lf>

which indicates that 2F is the correct checksum for the $--WIQ,MWV command.

Example of the MWV Query:

$--WIQ,MWV*2F<cr><lf>

$WIMWV,282,R,0.1,M,A*37<cr><lf>

(Wind angle 282 degrees, Wind speed 0.1 m/s)

XDR Transducer Measurement Query

The XDR query command outputs the data of all sensors except wind.

To request wind data with the XDR command, set the NMEA Wind formatter parameter in the wind sensor settings to T. See Wind Sensor on page 127.

Command format: $--WIQ,XDR*hh<cr><lf>

where

$ = Start of the message

-- = Device identifier of the requester

WI = Device type identifier (WI = weather instrument)

Q = Defines the message as Query

XDR = Transducer measurement command

* = Checksum delimiter

hh = Two-character checksum for the query command.

<cr><lf> = Command terminator
The response includes the parameters activated in the data messages. See Chapter 8 Sensor and Data Message Settings, on page 127.

NOTE

The parameter order in the output is as shown in the parameter selection setting field. See Chapter 8 Sensor and Data Message Settings, on page 127.

The response format:

$SWIXDR,a1,x.x1,u1,c--c1,an,x.xn,un,c--cn*hh<cr><lf>

where

- $ = Start of the message
- WI = Device type identifier (WI = weather instrument)
- XDR = Transducer measurement response identifier
- a1 = Transducer type for the first transducer, see the following transducer table.
- x.x1 = Measurement data from the first transducer
- u1 = Units of the first transducer measurement, see the following transducer table.
- c--c1 = First transducer identification (id). The transmitter’s address aXU,A is added as a base number to the transducer id. For changing the address, see Checking Current Communication Settings (aXU) on page 78 (command aXU,A= [0 ... 9/A ... Z/a ... z].

... an = Transducer type for the transducer n, see the following transducer table.

- x.xn = Measurement data from the transducer n
- un = Units of the transducer n measurement, see the following transducer table.

- c--cn = Transducer n id. the transmitter's address aXU,A is added as a base number to the Transducer #ID. The address is changeable, see command aXU,A= [0 ... 9/A ... Z/a ... z].

* = Checksum delimiter
The checksum to be typed in the query depends on the device identifier characters and can be asked from the WXT530 Series, see example below.

Example:

Typing the command $--WIQ.XDRxxx<cr><lf> (xxx arbitrary characters) the transmitter responds

SWITXT,01,01,08,Use chksum 2D*72<cr><lf>

indicating that 2D is the correct checksum for the $--WIQ.XDR command.

If there are several distinct measurements of the same parameter (according to the transducer table below), they are assigned different transducer ids.

For example, minimum, average and maximum wind speed are measurements of the same parameter (wind speed) so if all three are configured to be shown in the XDR message, they get transducer ids A, A+1 and A+2, respectively, where A is the transmitter address aXU,A. The same applies for the wind direction. Temperature, internal temperature and heating temperature have the same unit, thus they are assigned with transducer ids A, A+1 and A+2, respectively.

Accumulation, duration and intensity for rainfall and hails are measurements of the same parameters so they get transducer ids A for rainfall and A+1 for hails. Rain and hail peak intensities are assigned with transducer ids A+2 and A+3, respectively.

For example, for a transmitter with device address 0 the transducer ids of all the measurement parameters are as follows:

hh = Two-character checksum for the response
<cr><lf> = Response terminator

1. NMEA-format transmits only numbers as transducer ids. If the transmitter address is given as a letter, it is shown as a number (0 ... 9, A = 10, B = 11, a = 36, b = 37 etc.)
Table 19 Transducer IDs of Measurement Parameters

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Transducer ID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind direction min</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>Wind direction average</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Wind direction max</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Wind speed min</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>Wind speed average</td>
<td>1</td>
<td>S</td>
</tr>
<tr>
<td>Wind speed max</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Pressure</td>
<td>0</td>
<td>P</td>
</tr>
<tr>
<td>Air temperature</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>Internal temperature</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0</td>
<td>H</td>
</tr>
<tr>
<td>Rain accumulation</td>
<td>0</td>
<td>V</td>
</tr>
<tr>
<td>Rain duration</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td>Rain current intensity</td>
<td>0</td>
<td>R</td>
</tr>
<tr>
<td>Hail accumulation</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hail duration</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hail current intensity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rain peak intensity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hail peak intensity</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Heating temperature</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>0</td>
<td>U</td>
</tr>
<tr>
<td>Heating voltage</td>
<td>1</td>
<td>U</td>
</tr>
<tr>
<td>3.5 V reference voltage</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Information field</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Aux. rain (tipping bucket)</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>Solar radiation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Snow level</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Aux. temperature (pt1000)</td>
<td>3</td>
<td>C</td>
</tr>
</tbody>
</table>

Example of the XDR Query (all parameters of each sensor enabled and NMEA wind formatter set to T):

```
$--WIQ,XDR*2D<cr><lf>
```

Example of the response when all the parameters of each sensor are enabled (NMEA wind formatter set to T):

```
Wind sensor data

$WIXDR,A,302,D,0,A,320,D,1,A,330,D,2,S,0.1,M,0,S,0.2,M,1,S,0.2,M,2*57<cr><lf>
```
P, T, and RH data

$WIXDR,C,23.3,C,0,C,24.0,C,1,H,50.1,P,0,P,1009.5,H,0*75<cr><lf>

Precipitation data

$WIXDR,V,0.02,M,0,Z,30,s,0,R,2.7,M,0,V,0.0,M,1,Z,0,s,1,R,0.0,M,1,R,6.3,M,2,R,0.0,M,3*51<cr><lf>

Supervisor data

$WIXDR,C,20.4,C,2,U,12.0,N,0,U,12.5,V,1,U,3.460,V,2,G,HEL/____,,4*2D

The structure of the wind sensor response message:

where

$ = Start of the message
WI = Device type (WI = weather instrument)
XDR = Transducer measurement response identifier
A = Transducer id 0 type (wind direction), see the following Transducer table
302 = Transducer id 0 data (min wind direction)
D = Transducer id 0 units (degrees, min wind direction)
0 = Transducer id for min wind direction
A = Transducer id 1 type (wind direction)
320 = Transducer id 1 data (average wind direction)
D = Transducer id 1 units (degrees, average wind direction)
1 = Transducer id for average wind direction
A = Transducer id 2 type (wind direction)
330 = Transducer id 2 data (max wind direction)
D = Transducer id 2 units (degrees, max wind direction)
2 = Transducer id for max wind direction
S = Transducer id 0 type (wind speed)
0.1 = Transducer id 0 data (min wind speed)
M = Transducer id 0 units (m/s, min wind speed)
0 = Transducer id for min wind speed
The structure of the pressure, temperature and humidity sensor response message:

where

$ = Start of the message
WI = Device type (WI = weather instrument)
XDR = Transducer measurement response identifier
C = Transducer id 0 type (Temperature), see the following Transducer table
23.3 = Transducer id 0 data (Temperature)
C = Transducer id 0 units (C, Temperature)
0 = Transducer id for Temperature
C = Transducer id 1 type (temperature)
23.3 = Transducer id 1 data (Tp internal temperature)
C = Transducer id 1 units (C, Tp internal temperature)
1 = Transducer id for Tp internal temperature
H = Transducer id 0 type (Humidity)
50.1 = Transducer id 0 data (Humidity)
P = Transducer id 0 units (%, Humidity)
0 = Transducer id for Humidity
P = Transducer id 0 type (Pressure)
1009.1 = Transducer id 0 data (Pressure)
The structure of the precipitation sensor response message:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Transducer id 0 units (hPa, Pressure)</td>
</tr>
<tr>
<td>0</td>
<td>Transducer id for Pressure</td>
</tr>
<tr>
<td>*</td>
<td>Checksum delimiter</td>
</tr>
<tr>
<td>75</td>
<td>Two-character checksum for the response</td>
</tr>
<tr>
<td><code><cr></code><lf></td>
<td>Response terminator</td>
</tr>
</tbody>
</table>

where

- $ = Start of the message
- WI = Device type (WI = weather instrument)
- XDR = Transducer measurement response identifier
- V = Transducer id 0 type (Accumulated rainfall), see the following Transducer table
- 0.02 = Transducer id 0 data (Accumulated rainfall)
- I = Transducer id 0 units (mm, Accumulated rainfall)
- 0 = Transducer id for Accumulated rainfall
- Z = Transducer id 0 type (Rain duration)
- 30 = Transducer id 0 data (Rain duration)
- s = Transducer id 0 units (s, Rain duration)
- 0 = Transducer id for Rain duration
- R = Transducer id 0 type (Rain intensity)
- 2.7 = Transducer id 0 data (Rain intensity)
- M = Transducer id 0 units (mm/h, Rain intensity)
- 0 = Transducer id for Rain intensity
- V = Transducer id 1 type (Hail accumulation)
- 0.0 = Transducer id 1 data (Hail accumulation)
- M = Transducer id 1 units (hits/cm², Hail accumulation)
- 1 = Transducer id for Hail accumulation
- Z = Transducer id 1 type (Hail duration)
- 0 = Transducer id 1 data (Hail duration)
- s = Transducer id 1 units (s, Hail duration)
- 1 = Transducer id for Hail duration
The structure of the supervisor response message:

where

$ = Start of the message
WI = Device type (WI = weather instrument)
XDR = Transducer measurement response identifier
C = Transducer id 2 type (temperature), see the following Transducer table
20.4 = Transducer id 2 data (Heating temperature)
C = Transducer id 2 units (C, Heating temperature)
2 = Transducer id for Heating temperature
U = Transducer id 0 type (voltage)
12.0 = Transducer id 0 data (Heating voltage)
M = Transducer id 0 units (N = heating disabled or heating temperature too high\(^1\), Heating voltage)
0 = Transducer id for Heating voltage
U = Transducer id 1 type (Supply voltage)
12.5 = Transducer id 1 data (Supply voltage)
V = Transducer id 1 units (V, Supply voltage)
1 = Transducer id for Supply voltage
U = Transducer id 2 type (voltage)
3.460 = Transducer id 2 data (3.5V reference voltage)
V = Transducer id 2 units (V, 3.5V reference voltage)
2 = Transducer id for 3.5V reference voltage
G = Transducer id 4 type (generic)
HEL/___ = Transducer id 4 data (info field)
 = Transducer id 4 units (none, null)
4 = Transducer id for generic field
* = Checksum delimiter
2D = Two-character CRC for the response.
<cr><lf> = Response terminator

1. See Chapter 8, Supervisor Message, Setting Fields for definitions of the Heating voltage field.

Table 20 Transducer Table

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Type</th>
<th>Units Field</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>C</td>
<td>C = Celsius</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F = Fahrenheit</td>
<td></td>
</tr>
<tr>
<td>Angular displacement (wind</td>
<td>A</td>
<td>D = degrees</td>
<td></td>
</tr>
<tr>
<td>direction)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind speed</td>
<td>S</td>
<td>K = km/h, M = m/s, N = knots</td>
<td>S = mph, non-standardized¹</td>
</tr>
<tr>
<td>Pressure</td>
<td>P</td>
<td>B = bars, P = Pascal</td>
<td>H = hPa, I = inHg, M = mmHg</td>
</tr>
<tr>
<td>Humidity</td>
<td>H</td>
<td>P = Percent</td>
<td></td>
</tr>
<tr>
<td>Accumulated precipitation</td>
<td>V</td>
<td>M = mm, I = in, H = hits</td>
<td>non-standardized1</td>
</tr>
<tr>
<td>Time (duration)</td>
<td>Z</td>
<td>S = seconds</td>
<td>non-standardized1</td>
</tr>
<tr>
<td>Intensity (flow rate)</td>
<td>R</td>
<td>M = mm/h, I = in/h, H = hits/h</td>
<td>non-standardized1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for rainfall</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M = hits/cm²/h, I = hits/in²/h, H= hits/h for hails</td>
<td></td>
</tr>
<tr>
<td>Voltage</td>
<td>U</td>
<td>V = volts (also 50 % duty cycle for heating)</td>
<td>N = not in use, F = 50% duty cycle for heating, W = full power for heating</td>
</tr>
<tr>
<td>Generic</td>
<td>G</td>
<td>None (null)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P = Percent</td>
<td></td>
</tr>
</tbody>
</table>

1. Not specified in the NMEA 0183 Standard.
TXT Text Transmission

The text transmission response format:

$WITXT,xx,xx,xx,c--c*hh<cr><lf>

where

$ = Start of the message
WI = Talker identifier (WI = weather instrument)
TXT = Text transmission identifier.
xx = Total number of messages, 01 to 99
xx = Message number.
xx = Text identifier (see text message table)
c--c = Text message (see text message table)
* = Checksum delimiter
hh = Two-character checksum for the query command.
<cr><lf> = Response terminator

Examples:

$WITXT,01,01,01,Unable to measure error*6D<cr><lf> (wind data request when all the wind parameters were disabled from the wind message).

$WITXT,01,01,03,Unknown cmd error*1F (unknown command 0XO!<cr><lf>).

$WITXT,01,01,08,Use chksum 2F*72 (wrong checksum used in MWV query command)

Table 27 on page 168 shows the short text messages and their interpretation.
Automatic Mode

When NMEA 0183 v3.0 automatic protocol is selected, the transmitter sends data messages at user configurable update intervals. The message format is the same as in the MWV and XDR data queries. The NMEA wind formatter parameter in the wind sensor settings determines whether the wind messages are sent in MWV or XDR format.

You can use ASCII data query commands \texttt{aR1}, \texttt{aR2}, \texttt{aR3}, \texttt{aR5}, \texttt{aR0} and their CRC-versions \texttt{ar1}, \texttt{ar2}, \texttt{ar3}, \texttt{ar5}, \texttt{ar} and \texttt{ar0} also in NMEA 0183 protocol. The responses to these commands are in standard NMEA 0183 format.

For information message formatting the messages, refer to Chapter 8 Sensor and Data Message Settings, on page 127.

Automatic Composite Data Message (aR0)

When automatic composite data messaging is selected, the transmitter sends composite data messages at user configurable intervals. The message structure is the same as with the composite data query command \texttt{aR0} and contains a user configurable set of wind, pressure, temperature, humidity, precipitation and supervisor data.

Example (the parameters included can be chosen from the full parameter set of the commands \texttt{aR1}, \texttt{aR2}, \texttt{aR3} and \texttt{aR5}): \[
$WIXDR,A,057,D,1,S,0.6,M,1,C,22.6,C,0,H,27.1,P,0,P,1013.6,H,0,V,0.003,I,0,U,12.0,N,0,U,12.4,V,1*67<cr><lf>
\]

Example (rain and voltage parameters removed): \[
$WIXDR,A,054,D,1,S,0.4,M,1,C,22.5,C,0,H,26.3,P,0,P,1013.6,H,0*79<cr><lf>
\]

For information on selecting the parameter set in the response message, refer to Chapter 8 Sensor and Data Message Settings, on page 127.

Automatic composite data messaging is in concurrent, not alternate mode to either the polled or automatic modes.
CHAPTER 8
SENSOR AND DATA MESSAGE SETTINGS

This chapter lists the sensor configuration and data message formatting commands for all communications protocols: ASCII, NMEA 0183 and SDI-12.

Sensor and data message settings can also be done using the Vaisala Configuration Tool software. See Table 41 on page 180.

Wind Sensor

Checking the Settings (aWU)

With the following command you can check the current wind sensor settings.

Command format in ASCII and NMEA 0183: aWU<cr><lf>

Command format in SDI-12: aXWU!

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
where

\[a \] = Device address

\[WU \] = Wind sensor settings command in ASCII and NMEA 0183

\[XWU \] = Wind sensor settings command in SDI-12

\[<cr><lf> \] = Command terminator in ASCII and NMEA 0183

\[! \] = Command terminator in SDI-12

The response in ASCII and NMEA 0183:

\[aWU,R=[R],I=[I],A=[A],G=[G],U=[U],D=[D],N=[N],F=[F]<cr><lf> \]

The response in SDI-12:

\[aXWU,R=[R],I=[I],A=[A],G=[G],U=[U],D=[D],N=[N],F=[F]<cr><lf> \]

where \([R][I][A][G][U][D][N]\) are the setting fields, see the following sections.

Example (ASCII and NMEA 0183, device address 0):

\[0WU<cr><lf> \]

\[0WU,R=01001000&00100100,I=60,A=10,G=1,U=N,D= -
90,N=W,F=4<cr><lf> \]

Example (SDI-12, device address 0):

\[0XWU!0XWU,R=11111100&01001000,I=10,A=3,G=1,U=M,D=0,N =W,F=4<cr><lf> \]
Setting Fields

[R] = Parameter selection: This field consists of 16 bits defining the wind parameters included in the data messages. The bit value 0 disables and the bit value 1 enables the parameter.

The parameter order is shown in the following table:

<table>
<thead>
<tr>
<th>Bits 1-8 determine the parameters in the data message obtained with the following commands:</th>
<th>1st bit (most left)</th>
<th>Dn Direction minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ASCII: aR1 and ar1</td>
<td>2nd bit</td>
<td>Dm Direction average</td>
</tr>
<tr>
<td>-NMEA 0183: $--WIQ,XDR*hh</td>
<td>3rd bit</td>
<td>Dx Direction maximum</td>
</tr>
<tr>
<td>-SDI-12: aM1, aMC1, aC1, and aCC1</td>
<td>4th bit</td>
<td>Sn Speed minimum</td>
</tr>
<tr>
<td>-SDI-12 continuous: aR1 and aRC1</td>
<td>5th bit</td>
<td>Sm Speed average</td>
</tr>
<tr>
<td></td>
<td>6th bit</td>
<td>Sx Speed maximum</td>
</tr>
<tr>
<td></td>
<td>7th bit</td>
<td>output mode</td>
</tr>
<tr>
<td></td>
<td>8th bit</td>
<td>spare</td>
</tr>
<tr>
<td></td>
<td>&</td>
<td>delimiter</td>
</tr>
<tr>
<td>Bits 9-16 determine the wind parameters in the composite data message obtained with the following commands:</td>
<td>9th bit</td>
<td>Dn Wind direction minimum</td>
</tr>
<tr>
<td>-ASCII: aR0, ar0</td>
<td>10th bit</td>
<td>Dm Wind direction average</td>
</tr>
<tr>
<td>-NMEA 0183: aR0, ar0</td>
<td>11th bit</td>
<td>Dx Wind direction maximum</td>
</tr>
<tr>
<td>-SDI-12: aM, aMC, aC, and aCC</td>
<td>12th bit</td>
<td>Sn Speed minimum</td>
</tr>
<tr>
<td>-SDI-12 continuous: aR and aRC</td>
<td>13th bit</td>
<td>Sm Speed average</td>
</tr>
<tr>
<td></td>
<td>14th bit</td>
<td>Sx Speed maximum</td>
</tr>
<tr>
<td></td>
<td>15th bit</td>
<td>spare</td>
</tr>
<tr>
<td></td>
<td>16th bit (most right)</td>
<td>0</td>
</tr>
</tbody>
</table>

[I] = Update interval: 1 ... 3600 seconds

[A] = Averaging time: 1 ... 3600 seconds

Defines the period over which the wind speed and direction averaging is calculated. Same period is also used for maximum and minimum calculation. See Appendix D Wind Measurement Averaging Method on page 201 for difference in averaging practices when A<I and A>I.
[G] = Wind speed max/min calculation mode: 1 or 3
 seconds
 G =1: Traditional max/min calculation is performed
 both for speed and direction.
 G =3: Gust & lull are calculated for wind speed,
 while direction calculation is as it is with G =1. In
 the output messages, gust & lull replace the wind
 speed max/min values (Sx, Sn), respectively.

 For more detailed definitions of max/min and gust &
 lull calculations, see Wind Measurement Principle on
 page 29.

[U] = Speed unit: M = m/s, K = km/h, S = mph, N = knots

[D] = Direction offset: -180 ... 180°, see Wind Direction
 Offset on page 51.

[N] = NMEA wind formatter: T = XDR (transducer
 syntax), W = MWV (wind speed and angle)
 Defines whether the wind message is sent in XDR or
 MWV format.

[F] = Sampling rate: 1, 2, or 4 Hz
 Defines how frequently the wind is measured. Lower
 sampling rate reduces the power consumption, but it
 also weakens the measurement representativeness.

<cr><lf> = Response terminator

NOTE

When using MWV wind messages in NMEA 0183, one of the [R]
field's bits 1-6 must be 1.

NOTE

For representative wind values, use an averaging time that is long
enough in relation to sampling rate (at least four samples per averaging
time).
Chapter 8 __ Sensor and Data Message Settings

Changing the Settings (aWU)

You can change the following settings:
- parameters included in the wind data message,
- update interval,
- averaging time,
- wind speed max/min calculation mode,
- speed unit,
- direction offset, and
- NMEA wind formatter.

Change the settings with the following command. For details on the value or letters for the setting fields, see the examples and Setting Fields on page 129.

Command format in ASCII and NMEA 0183:

```
aWU,R=x,I=x,A=x,G=x,U=x,D=x,N=x,F=x<cr><lf>
```

Command format in SDI-12:

```
aXWU, R=x,I=x,A=x,G=x,U=x,D=x,N=x,F=x!
```

where
- D, N, F
- x = Value for the setting
- <cr><lf> = Command terminator in ASCII and NMEA 0183
- ! = Command terminator in SDI-12

NOTE

If averaging time [A] is greater than update interval [I], it is a multiple of the update interval and at maximum 12 times greater. Example: If I = 5 s, A_max = 60 s.
Examples (ASCII and NMEA 0183, device address 0):

You need a 20-second averaging time for wind speed and direction both in wind data and composite data message in every 60 seconds. Wind speed is in knots and wind direction offset +10°.

Changing the measurement interval to 60 seconds:

0WU,I=60<cr><lf>

0WU,I=60<cr><lf>

Changing the averaging time to 20 seconds, the wind speed unit to knots, and direction offset to +10°:

0WU,A=20,U=N,D=10<cr><lf>

0WU,A=20,U=N,D=10<cr><lf>

Changing the wind parameter selection:

0WU,R=0100100001001000<cr><lf>

0WU,R=01001000&00100100<cr><lf>

Notes:

Several parameters can be changed with the same command as long as the command length does not exceed 32 characters, see below.

Changing the averaging time to 20 seconds, the wind speed unit to knots, and direction offset to +10°:

0WU,A=20,U=N,D=10<cr><lf>

0WU,A=20,U=N,D=10<cr><lf>

Changing the wind parameter selection:

0WU,R=0100100001001000<cr><lf>

0WU,R=01001000&00100100<cr><lf>

Notes:

Character '&' is not allowed in the command.
The wind message response after the change above:

0R1<cr><lf>

0R1,Dm=268D,Sm=1.8N<cr><lf>

Example (SDI-12, device address 0):

Changing the measurement interval to 10 seconds:

0XWU,I=10!0<cr><lf>

In SDI-12 mode a separate enquiry (0XWU!) must be given to check the data content.
Pressure, Temperature, and Humidity Sensors

Checking the Settings (aTU)

Use this command to check the current pressure, temperature and humidity sensor settings.

Command format in ASCII and NMEA 0183: `aTU<cr><lf>`

Command format in SDI-12: `aXTU!`

where

`a` = Device address
`TU` = Pressure, temperature and humidity sensor settings command in ASCII and NMEA 0183
`XTU` = Pressure, temperature and humidity sensor settings command in SDI-12
`<cr><lf>` = Command terminator in ASCII and NMEA 0183
`!` = Command terminator in SDI-12

The response in ASCII and NMEA 0183:

`aTU,R=[R],I=[I],P=[P],H=[H]<cr><lf>`

The response in SDI-12:

`aXTU,R=[R],I=[I],P=[P],H=[H]<cr><lf>`

where `[R][I][P][H]` are the setting fields, see the following section.

Example (ASCII and NMEA 0183, device address 0):

```
0TU<cr><lf>
0TU,R=11010000&11010000,I=60,P=H,T=C<cr><lf>
```

Example (SDI-12, device address 0):

```
0XTU!0XTU,R=11010000&11010000,I=60,P=H,T=C<cr><lf>
```
Setting Fields

[R] = Parameter selection: This field consists of 16 bits defining the PTU parameters included in the data messages. The bit value 0 disables and the bit value 1 enables the parameter.

<table>
<thead>
<tr>
<th>Bits 1-8 determine the parameters included in the message obtained with the following commands:</th>
<th>1st bit (most left)</th>
<th>Pa Air pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ASCII: aR2 and ar2</td>
<td>2nd bit</td>
<td>Ta Air temperature</td>
</tr>
<tr>
<td>-NMEA 0183: $--WlQ,XDR*hh</td>
<td>3rd bit</td>
<td>Tp Internal temperature¹</td>
</tr>
<tr>
<td>-SDI-12: aM2, aMC2, aC, and aCC2</td>
<td>4th bit</td>
<td>Ua Air humidity</td>
</tr>
<tr>
<td>-SDI-12 continuous: aR2 and aRC2</td>
<td>5th bit</td>
<td>spare</td>
</tr>
<tr>
<td>Bits 9-16 determine the PTU parameters included in the composite data message obtained with the following commands:</td>
<td>6th bit</td>
<td>spare</td>
</tr>
<tr>
<td>-ASCII: aR0 and ar0</td>
<td>7th bit</td>
<td>spare</td>
</tr>
<tr>
<td>-NMEA 0183: aR0, ar0</td>
<td>8th bit</td>
<td>spare</td>
</tr>
<tr>
<td>-SDI-12: aM, aMC, aC, and aCC</td>
<td>& delimiter</td>
<td></td>
</tr>
<tr>
<td>-SDI-12 continuous: aR and aRC</td>
<td>9th bit</td>
<td>Pa Air pressure</td>
</tr>
<tr>
<td></td>
<td>10th bit</td>
<td>Ta Air temperature</td>
</tr>
<tr>
<td></td>
<td>11th bit</td>
<td>Tp Internal temperature¹</td>
</tr>
<tr>
<td></td>
<td>12th bit</td>
<td>Ua Air humidity</td>
</tr>
<tr>
<td></td>
<td>13th bit</td>
<td>spare</td>
</tr>
<tr>
<td></td>
<td>14th bit</td>
<td>spare</td>
</tr>
<tr>
<td></td>
<td>15th bit</td>
<td>spare</td>
</tr>
<tr>
<td></td>
<td>16th bit</td>
<td>spare</td>
</tr>
</tbody>
</table>

¹. Tp temperature value is used in pressure calculation, it does not express the air temperature.

[I] = Update interval: 1 ... 3600 seconds

[P] = Pressure unit: H = hPa, P = Pascal, B = bar, M = mmHg, I = inHg

[T] = Temperature unit: C = Celsius, F = Fahrenheit

<cr><lf> = Response terminator
Changing the Settings (aTU)

You can change the following settings:

- parameters included in the data message,
- update interval,
- pressure unit
- temperature unit

Change the setting with the following command. For details on the values or letters for the setting fields, see the examples and Setting Fields on page 135.

Command format in ASCII and NMEA 0183:

\[\text{aTU,R=x,I=x,P=x,T=x<cr><lf>} \]

Command format in SDI-12:

\[\text{aXTU,R=x,I=x,P=x,T=x!} \]

where

\[\begin{align*}
R, I, P, T & = \text{The pressure, temperature and humidity sensor setting fields. See Setting Fields on page 135.} \\
x & = \text{Value for the setting} \\
<\text{cr}><\text{lf}> & = \text{Command terminator in ASCII and NMEA 0183} \\
! & = \text{Command terminator in SDI-12}
\end{align*} \]

Examples (ASCII and NMEA 0183, device address 0):

You need the temperature and humidity data to be available in every 30 seconds

Changing the parameter selection:

\[\text{0TU,R=0101000001010000<cr><lf}> \]

\[\text{0TU,R=01010000&01010000<cr><lf}> \]
Changing the update interval:

```
0TU,I=30<cr><lf>
0TU,I=30<cr><lf>
```

The response after the change:

```
0R2<cr><lf>
0R2,Ta=23.9C,Ua=26.7P<cr><lf>
```

Example (SDI-12, device address 0):

Changing the temperature unit to Fahrenheit:

```
0XTU,U=F!<cr><lf>
```

In SDI-12 mode a separate enquiry (0XTU!) must be given to check the data content.
Precipitation Sensor

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Checking the Settings (aRU)

Use this command to check the current precipitation sensor settings.

Command format in ASCII and NMEA 0183: `aRU<cr><lf>`

Command format in SDI-12: `aXRU!`

where

- `a` = Device address
- `RU` = Precipitation sensor settings command in ASCII and NMEA 0183
- `XRU` = Precipitation sensor settings command in SDI-12
- `<cr><lf>` = Command terminator in ASCII and NMEA 0183
- `!` = Command terminator in SDI-12

The response in ASCII and NMEA 0183:

```
aRU,R=\[R\],I=\[I\],U=\[U\],S=\[S\],M=\[M\],Z=\[Z\],X=\[X\],Y=\[Y\]<cr>
<lf>
```

The response in SDI-12:

```
aXRU,R=\[R\],I=\[I\],U=\[U\],S=\[S\],M=\[M\],Z=\[Z\],X=\[X\],Y=\[Y\]<cr>
<lf>
```

where `[R][I][U][S][M][Z][X][Y]` are the setting fields, see the following section.

Example (ASCII and NMEA 0183, device address 0):

```
0RU<cr><lf>
```

```
0RU,R=11111100&10000000,I=60,U=M,S=M,M=R,Z=M,X=100,Y=100<cr><lf>
```
Example (SDI-12, device address 0):

```
0RU!0RU,R=11111100&10000000,I=60,U=M,S=M,M=R,
Z=M,X=100,Y=100<cr><lf>
```

Setting Fields

[R] = Parameter selection: This field consists of 16 bits defining the precipitation parameters included in the data messages. The bit value 0 disables and the bit value 1 enables the parameter.

The parameter order is shown in the following table:

<table>
<thead>
<tr>
<th>Bits 1-8 determine the parameters included in the messages obtained with the following commands:</th>
<th>1st bit (most left)</th>
<th>Rc Rain amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd bit</td>
<td>Rd Rain duration</td>
<td></td>
</tr>
<tr>
<td>3rd bit</td>
<td>Ri Rain intensity</td>
<td></td>
</tr>
<tr>
<td>4th bit</td>
<td>Hc Hail amount</td>
<td></td>
</tr>
<tr>
<td>5th bit</td>
<td>Hd Hail duration</td>
<td></td>
</tr>
<tr>
<td>6th bit</td>
<td>Hi Hail intensity</td>
<td></td>
</tr>
<tr>
<td>7th bit</td>
<td>Rp Rain peak</td>
<td></td>
</tr>
<tr>
<td>8th bit</td>
<td>& delimiter</td>
<td></td>
</tr>
<tr>
<td>9th bit</td>
<td>Rc Rain amount</td>
<td></td>
</tr>
<tr>
<td>10th bit</td>
<td>Rd Rain duration</td>
<td></td>
</tr>
<tr>
<td>11th bit</td>
<td>Ri Rain intensity</td>
<td></td>
</tr>
<tr>
<td>12th bit</td>
<td>Hc Hail amount</td>
<td></td>
</tr>
<tr>
<td>13th bit</td>
<td>Hd Hail duration</td>
<td></td>
</tr>
<tr>
<td>14th bit</td>
<td>Hi Hail intensity</td>
<td></td>
</tr>
<tr>
<td>15th bit</td>
<td>Rp Rain peak</td>
<td></td>
</tr>
<tr>
<td>16th bit (most right)</td>
<td>Hp Hail peak</td>
<td></td>
</tr>
</tbody>
</table>

[I] = Update interval: 1 ... 3600 seconds. This interval is valid only if the [M] field is = T

[U] = Precipitation units:

- **M** = metric (accumulated rainfall in mm, Rain duration in s, Rain intensity in mm/h)
- **I** = imperial (the corresponding parameters in units in, s, in/h)
[S] = Hail units:
M = metric (accumulated hailfall in hits/cm², Hail event duration in s, Hail intensity in hits/cm²h)
I = imperial (the corresponding parameters in units hits/in², s, hits/in²h), H = hits (hits, s, hits/h)
Changing the unit resets the precipitation counter.

[M] = Auto-send mode: R = precipitation on/off, C = tipping bucket, T = time based
R = precipitation on/off: The transmitter sends a precipitation message 10 seconds after the first recognition of precipitation. Rain duration Rd increases in 10 s steps. Precipitation has ended when Ri = 0. This mode is used for indication of the start and the end of the precipitation.
C = tipping bucket: The transmitter sends a precipitation message at each unit increment (0.1 mm/0.01 in). This simulates conventional tipping bucket method.
T = time based: Transmitter sends a precipitation message in the intervals defined in the [I] field.
Do not use the auto-send mode tipping bucket in polled protocols as it decreases the resolution of the output (quantized to tipping bucket tips).

[Z] = Counter reset: M = manual, A = automatic, L=limit
Y = immediate
M = manual reset mode: The counter is reset with aXZRU command. See Precipitation Counter Reset (aXZRU) on page 85.
A = automatic reset mode: The counts are reset after each precipitation message whether in automatic mode or when polled.
L = overflow reset mode. The rain counter or hail counter is reset, when it reaches the predefined limit. The overflow limits (x, y) are defined with the commands aRU,X=x for rain counter and aRU,Y=y for hail counter.
Y = immediate reset: The counts are reset immediately after receiving the command.
[X] = Rain accumulation limit: 100...65535. Sets the rain accumulation counter resetting limit. When the value exceeds the limit, the counter is reset to zero. If the precipitation unit aRU,U=x is metric, the limit corresponds the range between 1.00...655.35 mm. If the precipitation unit is imperial, the equivalent range varies between 0.100...65.535 in.

To enable this feature, set the counter reset to aRU,Z=L (overflow reset mode).

[Y] = Hail accumulation limit: 100...65535. Sets the hail accumulation counter resetting limit. When the value exceeds the limit, the counter is reset to zero. If the hail unit aRU,S=x is metric, the limit corresponds the range between 10.0...6553.5 hits/cm². If the unit is imperial, the equivalent range varies between 100...65535 hits/in². If the unit is hits, the limit matches directly to the amount of hits: 100...65535 hits.

To enable this feature, set the counter reset to aRU,Z=L (overflow reset mode).

<cr><lf> = Response terminator

NOTE

The auto-send mode parameter is significant only in ASCII automatic (+CRC) and NMEA 0183 automatic protocols.

NOTE

Changing the counter reset mode or precipitation/surface hits units also resets precipitation counter and intensity parameters.

The field [Z] defines how the counters are reset. Use "L" to enable the rain overflow reset mode. Now the rain accumulation limit feature (X and Y) becomes particularly useful for systems using an analog interface adapter. Thus, the dataloggers have no serial interface that would enable them to reset the rain counters.
Changing the Settings (aRU)

You can change the following settings:

- parameters included in the precipitation data message,
- update interval in the time based auto-send mode,
- precipitation units,
- hail units,
- auto-send mode,
- counter reset,
- rain accumulation limit and
- hail accumulation limit.

Make the desired setting with the following command. Select the correct value/letter for the setting fields, see Setting Fields on page 139. See the examples.

Command format in ASCII and NMEA 0183:

```
aRU,R=x,I=x, U=x,S=x,M=x,Z=x, X=x, Y=x<cr><lf>
```

Command format in SDI-12:

```
aXRU,R=x,I=x, U=x,S=x,M=x,Z=x, X=x,Y=x!
```

where

- x = Input value for the setting
- <cr><lf> = Command terminator in ASCII and NMEA 0183
- ! = Command terminator in SDI-12

Examples (ASCII and NMEA 0183):

Changing the precipitation units to imperial:

```
0RU,U=I<cr><lf>
0RU,U=I<cr><lf>
```

```
0RU,U=I<cr><lf>
```
Changing the auto-send mode to the tipping bucket mode:

0RU,M=C<cr><lf>

0RU,M=C<cr><lf>

Making the Rain amount Rc and Rain intensity Ri available both in the precipitation message and composite data message:

0RU,R=1010000010100000<cr><lf>

0RU,R=10100000&10100000<cr><lf>

The response after the change:

0R3<cr><lf>

0R3,Rc=0.00M,Ri=0.0M<cr><lf>

Example (SDI-12, device address 0):

Changing the counter reset mode (resets the precipitation counters):

0XRU,Z=M!0<cr><lf>

In SDI-12 mode a separate enquiry (0XRU!) must be given to check the data content.
Supervisor Message

Checking the Settings (aSU)

Use this command to check the current supervisor settings.

Command format in ASCII and NMEA 0183: \texttt{aSU<cr><lf>}

Command format in SDI-12: \texttt{aXSU!}

where

\begin{align*}
a & = \text{Device address} \\
SU & = \text{Supervisor settings command in ASCII and NMEA 0183} \\
XSU & = \text{Supervisor settings command in SDI-12} \\
<\text{cr}><\text{lf}> & = \text{Command terminator in ASCII and NMEA 0183} \\
! & = \text{Command terminator in SDI-12}
\end{align*}

The response in ASCII and NMEA 0183:

\texttt{aSU,R=[R],I=[I],S=[S],H=[Y]<cr><lf>}

The response in SDI-12:

\texttt{aXSU,R=[R],I=[I],S=[S],H=[Y]<cr><lf>}

Setting Fields

[R] = Parameter selection: This field consists of 16 bits defining the supervisor parameters included in the data messages. The bit value 0 disables and the bit value 1 enables the parameter.

<table>
<thead>
<tr>
<th>Bits 1-8 determine the parameters included in the message obtained with the following commands:</th>
<th>1st bit (most left)</th>
<th>Th Heating temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII: aR5 and ar5</td>
<td>2nd bit</td>
<td>Vh Heating voltage</td>
</tr>
<tr>
<td>NMEA 0183: $--WIQ,XDR*hh</td>
<td>3rd bit</td>
<td>Vs Supply voltage</td>
</tr>
<tr>
<td>SDI-12: aM5, aMC5, aC5, and aCC5</td>
<td>4th bit</td>
<td>Vr 3.5 V reference voltage</td>
</tr>
<tr>
<td>SDI-12 continuous: aR5 and aRC5</td>
<td>5th bit</td>
<td>Id Information field</td>
</tr>
<tr>
<td>Bits 9-16 determine the supervisor parameters included in the composite data message obtained with the following commands:</td>
<td>6th bit</td>
<td>spare</td>
</tr>
<tr>
<td>ASCII: aR0 and ar0</td>
<td>7th bit</td>
<td>spare</td>
</tr>
<tr>
<td>NMEA 0183: aR0, ar0</td>
<td>8th bit</td>
<td>spare</td>
</tr>
<tr>
<td>SDI-12: aM, aMC, aC, and aCC</td>
<td>&</td>
<td>delimiter</td>
</tr>
<tr>
<td>SDI-12 continuous: aR and aRC</td>
<td>9th bit</td>
<td>Th Heating temperature</td>
</tr>
<tr>
<td>Bits 9-16 determine the supervisor parameters included in the composite data message obtained with the following commands:</td>
<td>10th bit</td>
<td>Vh Heating voltage</td>
</tr>
<tr>
<td>ASCII: aR0 and ar0</td>
<td>11th bit</td>
<td>Vs Supply voltage</td>
</tr>
<tr>
<td>NMEA 0183: aR0, ar0</td>
<td>12th bit</td>
<td>Vr 3.5 V reference voltage</td>
</tr>
<tr>
<td>SDI-12: aM, aMC, aC, and aCC</td>
<td>13th bit</td>
<td>Id Information field</td>
</tr>
<tr>
<td>SDI-12 continuous: aR and aRC</td>
<td>14th bit</td>
<td>spare</td>
</tr>
<tr>
<td>Bits 9-16 determine the supervisor parameters included in the composite data message obtained with the following commands:</td>
<td>15th bit</td>
<td>spare</td>
</tr>
<tr>
<td>ASCII: aR0 and ar0</td>
<td>16th bit (most right)</td>
<td>spare</td>
</tr>
<tr>
<td>NMEA 0183: aR0, ar0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDI-12: aM, aMC, aC, and aCC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDI-12 continuous: aR and aRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[I] = Update interval: 1 ... 3600 seconds. When the heating is enabled the update interval is forced to 15 seconds.

[S] = Error messaging: Y = enabled, N = disabled

[H] = Heating control enable: Y = enabled, N = disabled

Heating enabled: The control between full and half heating power is on as described in Heating on page 34.

Heating disabled: Heating is off in all conditions.

<cr><lf> = Response terminator
Example (ASCII and NMEA 0183, device address 0):

0SU<cr><lf>
0SU,R=11110000&11000000,I=15,S=Y,H=Y<cr><lf>

Example (SDI-12, device address 0):

0XSU!0XSU,R=11110000&11000000,I=15,S=Y,H=Y<cr><lf>

Changing the Settings (aSU)

You can change the following settings:

- parameters included in the supervisor data message,
- update interval,
- error messaging on/off, and
- heating control.

Make the desired setting with the following command. Select the correct value/letter for the setting fields. See the examples and Setting Fields on page 145.

Command format in ASCII and NMEA 0183:

\[aSU,R=x,I=x,S=x,H=x<cr><lf> \]

Command format in SDI-12:

\[aXSU,R=x,I=x,S=x,H=x! \]

where

\[\begin{align*}
 R, & I, S, H & = & \text{The supervisor setting fields. See Setting Fields on page 145.} \\
 x & = & \text{Value for the setting} \\
 <\text{cr}>\text{<lf>} & = & \text{Command terminator in ASCII and NMEA 0183} \\
 ! & = & \text{Command terminator in SDI-12}
\end{align*} \]
Example (ASCII and NMEA 0183, device address 0):

Disabling the heating and error messaging:

\[0SU,S=N,H=N<\text{cr}><\text{lf} \]
\[0SU,S=N,H=N<\text{cr}><\text{lf} \]

Example (SDI-12, device address 0):

Changing the update interval to 10 seconds:

\[0XSU,I=10!0<\text{cr}><\text{lf} \]

In SDI-12 mode a separate enquiry (0XSU!) must be given to check the data content.

Composite Data Message (aR0)

You can define the parameters to be included in the composite data message \textbf{aR0} in the parameter selection fields of each parameter (\textbf{aWUR}, \textbf{aTU,R}, \textbf{aRU,R}, and \textbf{aSU,R}). See parameter tables of each sensor in the previous sections. See the following examples.

NOTE

When changing the bits 9-16 of the parameter selection of any sensor, the command you can shorten the command by replacing the bits 1-8 with a single ‘&’ character, see the examples.

Example (ASCII and NMEA 0183, device address 0):

To format a composite data message with average wind direction, average wind speed, temperature, humidity and pressure data when the original composite data message contains following data: maximum wind direction, maximum wind speed, temperature, humidity, pressure, accumulated rainfall, supply voltage and heating voltage:

\[0R0<\text{cr}><\text{lf} \]
\[0R0,Dx=009D,Sx=0.2M,Ta=23.3C,Ua=37.5P,Pa=996.8H,Rc=0.000I,Vs=12.0V,Vh=0.0N<\text{cr}><\text{lf} \]
Replace the maximum wind direction (Dx) and speed (Sx) with average wind direction (Dm) and average wind speed (Sm):

```
0WU,R=&01001000<cr><lf>
0WU,R=11110000&01001000<cr><lf>
```

Remove the heating voltage (Vh) and temperature (Th) data from the composite data message, and include the information field (Id):

```
0SU,R=&00001000<cr><lf>
0SU,R=11110000&00001000<cr><lf>
```

Remove the accumulated rainfall (Re) from the composite data message:

```
0RU,R=&00000000<cr><lf>
0RU,R=11111100&00000000<cr><lf>
```

The final composite data message query and response in ASCII:

```
0R0<cr><lf>
0R0,Dm=009D,Sm=0.2M,Ta=23.3C,Ua=37.5P,
Pa=996.8H,Id=HEL___<cr><lf>
```
Analog Input

The pins of the analog input connectors are shown below.

![Analog Input Connector Pins](image)

The following table describes analog input signal names and descriptions.

<table>
<thead>
<tr>
<th>Signal name</th>
<th>M12 Pin</th>
<th>Description</th>
<th>Use example</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTI+</td>
<td>1</td>
<td>PT1000 measuring current</td>
<td>PT1000 temperature sensor. Current feed</td>
</tr>
<tr>
<td>PT+</td>
<td>2</td>
<td>PT1000 input+</td>
<td>PT1000 temperature sensor. Sense+</td>
</tr>
<tr>
<td>PT-</td>
<td>3</td>
<td>PT1000 input-</td>
<td>PT1000 temperature sensor. Sense-</td>
</tr>
<tr>
<td>AGND</td>
<td>4</td>
<td>Analog ground</td>
<td>Common ground for level, tipping bucket, and PT1000</td>
</tr>
<tr>
<td>TIP IN</td>
<td>5</td>
<td>Pulse counting input (pulled up with resistor)</td>
<td>Tipping bucket type rain sensor</td>
</tr>
<tr>
<td>SR+</td>
<td>6</td>
<td>Differential 0 ... 25 mV input, +</td>
<td>Pyranometer</td>
</tr>
<tr>
<td>SR-</td>
<td>7</td>
<td>Differential 0 ... 25 mV input, -</td>
<td>Pyranometer</td>
</tr>
<tr>
<td>WS IN</td>
<td>8</td>
<td>0 ... 2.5/0 ... 5/0 ... 10 V input</td>
<td>Water/snow level sensor</td>
</tr>
</tbody>
</table>
The figure below shows the analog input settings in the Configuration Tool.

![Analog Inputs Settings](image)

Figure 38 Analog Input Settings in Configuration Tool
Chapter 8 __ Sensor and Data Message Settings

The factory default settings for analog input:

- All measurement messages enabled
- Update interval 60 s
- Solar radiation and aux level averaging time 3 s
- Solar radiation gain 100 000
- Aux level range 5 V
- Aux level gain 1
- Aux temperature average time 1 s
- Aux rain counter reset: manual
- Aux rain gain 0.2 (for 0.2 mm per tip)

Table 22 Analog Input Setting Definitions

<table>
<thead>
<tr>
<th>Setting</th>
<th>Default value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update interval</td>
<td>1 min</td>
<td>Defines analog input measurement interval. A shorter interval and a longer averaging time increase power consumption.</td>
</tr>
<tr>
<td>Solar radiation and aux. level averaging time</td>
<td>3 s</td>
<td>Defines averaging times for solar radiation and aux level voltage measurement.</td>
</tr>
<tr>
<td>Solar radiation gain</td>
<td>100000</td>
<td>Taken from solar radiation sensor calibration documents provided with the sensor. For example for sensitivity 19.71μV/W/m² gain is 1 / 0.00001971V/W/m² = 50736</td>
</tr>
<tr>
<td>Aux. level range</td>
<td>0 ... 5 V</td>
<td>Selects voltage measurement range. Available ranges: 0 ... 2.5 V, 0 ... 5 V, 0 ... 10 V</td>
</tr>
<tr>
<td>Aux. level gain</td>
<td>1</td>
<td>Defines gain factor for auxiliary level voltage measurement. Gain can be used to convert voltage reading directly to distance/height.</td>
</tr>
<tr>
<td>Aux. temperature averaging time</td>
<td>1</td>
<td>Defines PT1000 temperature sensor measurement averaging time in seconds. To minimize sensor self-heating effect, make it short.</td>
</tr>
<tr>
<td>Aux. rain counter reset</td>
<td>M = No reset</td>
<td>Defines how to reset the rain counter. M means that you have to manually reset the counter.</td>
</tr>
<tr>
<td>Aux. rain gain</td>
<td>0.2 mm</td>
<td>Comes from the rain sensor tipping bucket size. It means pulses / user rain unit (for example, mm). If the aux. sensor has 5 pulses per mm of rain, and the user sets the gain to 0.2, the rain value reported by the transmitter is in mm.</td>
</tr>
<tr>
<td>Aux. rain counter limit</td>
<td>Used only when L = based on limit is selected. Resets the rain counter when it reaches this value. The same unit as the gain G has.</td>
<td></td>
</tr>
</tbody>
</table>
WXT530 Series settings:

0IU,R=11111000&11111000,I=60,A=3.0
0IB,G=100000.0
0IS,M=1,G=1.0
0IP,A=1.0
0IA,M=M,G=0.2

Enabling and Disabling Analog Input

If the analog input option is selected for WXT536, all analog inputs are enabled by default.

You can enable and disable analog output with the `aIU,R=` command.

For example, PT1000 temperature enabled, all other disabled:

```
aIU,R=1000000010000000
```

You need to reset the transmitter to apply the new setting. When analog output is in use, the serial port does not work. The service connector functions.

For aWU setting fields, see Table 25 aWU Setting Fields [R], on page 161

Common Sensor Settings (aIU)

Update Interval [I]

The update interval in seconds. This parameter defines the measurement interval for analog inputs:

- pt1000
- solar radiation
- aux rain

The range: 0.5 ... 3600
Aux Input Averaging Time [A]

The Aux Input averaging time in seconds. This parameter defines the averaging time for snow level and solar radiation measurement. pt1000 and the tipping bucket are not affected by this setting.

Make sure the averaging time is smaller than the update interval [I]. The smallest value 0.25 s means single measurement. A longer averaging time can decrease noise. A shorter averaging times gives a slightly smaller current consumption.

Parameter Selection [R]

[R] defines the active measurements.

<table>
<thead>
<tr>
<th>Normal message</th>
<th>1st bit (most left)</th>
<th>Tr pt1000 temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd bit</td>
<td>Ra Aux rain amount</td>
<td></td>
</tr>
<tr>
<td>3rd bit</td>
<td>Sl snow level</td>
<td></td>
</tr>
<tr>
<td>4th bit</td>
<td>Sr solar radiation</td>
<td></td>
</tr>
<tr>
<td>5th bit</td>
<td>Rt pt1000 resistance</td>
<td></td>
</tr>
<tr>
<td>6th bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th bit</td>
<td>Analog output mode</td>
<td></td>
</tr>
<tr>
<td>8th bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>delimiter</td>
<td></td>
</tr>
</tbody>
</table>

| Composite message | 9th bit | Tr pt1000 temperature |
| | 10th bit| Ra Aux rain amount |
| | 11th bit| Sl Aux level |
| | 12th bit| Sr solar radiation |
| | 13th bit| Rt pt1000 resistance |
| | 14th bit| 0 |
| | 15th bit| 0 |
| | 16th bit| 0 |
Getting Data Messages

You can get data messages with the \texttt{aR4} command.

An example response:

0R4, Sr=0.5V, Ra=0.0M, Tr=13.2C, Sl=0.0V

\begin{itemize}
 \item \textbf{Sr} \hspace{1cm} Solar radiation (\textit{V} = volts at input \times \textit{gain})
 \item \textbf{Ra} \hspace{1cm} aux rain accumulation (\textit{M} = \text{mm})
 \item \textbf{Tr} \hspace{1cm} pt1000 (\textit{C} = \text{Celsius}, \textit{F} = \text{Fahrenheit})
 \item \textbf{Sl} \hspace{1cm} Snow level (\textit{V} = volts at input \times \textit{gain})
\end{itemize}

You can set the gain for \textit{Sr} and \textit{Sl}.

\textbf{Aux.rain Sensor Settings [aIA]}

\textbf{Gain [G]}

\[G\] defines the pulses per rain unit, for example in mm.

If the Aux sensor has 10 pulses per a millimeter of rain and the user sets the gain to \(1/10\), the transmitter reports the rain value in mm.

The range: 0.000 000 001 .. 1 000 000

For example, you can set aux rain gain for Young Model 52202/52203 Tipping Bucket Rain Gauge. The resolution is 0.1 mm per tip. Set the gain to 0.1 \(\times\) 2 = 0.2 so that the Ra rain amount WXT reports is in millimeters. The multiplier 2 means that the tipping bucket sends one pulse per two tips.
Reset Mode [M]

[M] defines the reset mode.

\[
\begin{align*}
M & = \text{no reset} \\
L & = \text{based on limit} \\
A & = \text{automatic (aux rain message sent)}
\end{align*}
\]

The initial tip counter overflows if it reaches 65536 and it starts from 0. If the tipping bucket resolution is 0.2 mm per tip, the gain is 0.2, and the maximum rain amount before overflow is \(65536 \times 0.2 = 13107\) mm.

Limit [L]

[L] defines the reset limit. The rain counter resets when it reaches this value. The unit is the same as in gain [G].

The range: 0.000 000 001 ... 1 000 000

Parameter Selection [aIU,R = bit 2 and bit 10]

Bits 7 and 14 enable normal and composite message for aux rain accumulation. You can select the parameter with the \texttt{aIU} command. The maximum value for the rain counter is \(65535 \times \text{gain}\).

Solar Radiation Sensor Settings [aIB]

Gain [G]

[G] defines the volts / user unit, for example, \(\mu\text{V}/\text{W}/\text{m}^2\). WXT reports the voltage at solar radiation input multiplied with gain [G].

For example, if the solar radiation sensor has sensitivity 5 \(\mu\text{V}/\text{W}/\text{m}^2\) and you set the gain [G] to \(1/\mu\text{V} = 200 000\), the solar radiation value reported by WXT is in \(\text{W}/\text{m}^2\). WXT reports the value always with six decimals.
The range: 0.000 000 001 ... 1 000 000

Parameter Selection [aIU,R= bit 3 and bit 11]

The bits enable normal and composite messages. You can select the parameters with the **aIU** command.

Aux Level Sensor Settings [aIS]

Gain [G]

[G] defines the volts / user unit, for example, V/m. WXT reports the voltage at input multiplied with the gain [G].

For example, if the sensor has gain 2 V/meter and the user sets the gain [G] to 0.5, the value reported by WXT is in meters. WXT reports the value with six decimals.

The range: 0.000 000 001 ... 1 000 000

Parameter Selection [aIU,R= (bit 3 and bit 11)]

The bits enable normal and composite messages. You can select the parameters with the **aIU** command.

Aux.temperature Sensor Settings [aIP]

You can set the temperature settings for the temperature unit with the **aTU,U=** command.

Averaging Time [A]

The averaging time in seconds, resolution 0.5 s. You can set a short averaging time (0.5 s) to reduce the pt1000 sensor self-heating. The message interval defines how often the measurement starts. The measurement is performed every 0.5 s for averaging time.

The range: 0.5 ... 3600
Parameter Selection [aIU,R= (bit 1 and bit 9)]

The bits 7 and 14 enable normal and composite message for Aux rain accumulation. You can select the parameters with the aIU command.

Parameter Order for SDI-12 Mode

The parameter order for SDI-12 mode is:

Analog in (M4): Tr Ra Sl Rt Sr

Analog Output

You can change the analog output type and scaling of WXT532. For instructions, see Analog Output Scaling on page 158.

WXT532 provides the following analog outputs:

- AOUT1 for wind speed data
- AOUT2 for wind direction data

For instructions on wiring, see Wiring and Power Management on page 53.

The analog output value is updated based on a WU,I= settings. Wind measurement uses aWU settings, such as Averaging Time.

Analog Output Operation

You can order WXT532 with either 4 ... 20 mA scaling or 0 ... 20 mA scaling.

You can scale the output with the command aSU.
Example commands to set 4 ... 20 mA operation:

Wind Speed Gain
aSU,a=0.333333<cr><lf>
Wind Speed Offset
aSU,b=4<cr><lf>
Wind Speed minimum
aSU,c=0<cr><lf>
Wind Speed maximum
aSU,d=22<cr><lf>
WS error indication
aSU,e=2<cr><lf>
Wind Direction Gain
aSU,f=0.044444<cr><lf>
Wind Direction Offset
aSU,g=4<cr><lf>
WD minimum
aSU,h=0<cr><lf>
WD maximum
aSU,j=22<cr><lf>
WD error indication
aSU,k=2<cr><lf>

The output o in mA is $o=i \times$ gain + offset. o is clamped between min and max. If wind measurement fails, the output value is err.

Analog Output Scaling

You can specify the transfer function between measured values and output analog values. You can select the analog output gain and offset used in the transfer function.

The factory default settings for the different analog output modes are displayed in the table below.

Table 24 Analog Output Scaling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4 ... 20 mA option (max 60 m/s)</th>
<th>0 ... 20 mA option (max 60 m/s)</th>
<th>Command example (4 ... 20 mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aout1, Wind Speed Gain</td>
<td>0.266667 mA/m/s</td>
<td>0.333333 mA/m/s</td>
<td>aSU,a=0.266667<cr><lf></td>
</tr>
<tr>
<td>Aout1, Wind Speed Offset</td>
<td>4 mA</td>
<td>0 mA</td>
<td>aSU,b=4<cr><lf></td>
</tr>
<tr>
<td>Aout1, Wind Speed Minimum</td>
<td>0 mA</td>
<td>0 mA</td>
<td>aSU,c=0<cr><lf></td>
</tr>
<tr>
<td>Aout1, Wind Speed Maximum</td>
<td>22 mA</td>
<td>22 mA</td>
<td>aSU,d=22<cr><lf></td>
</tr>
<tr>
<td>Aout1, Wind Speed Error Indication</td>
<td>2 mA</td>
<td>22 mA</td>
<td>aSU,e=2<cr><lf></td>
</tr>
<tr>
<td>Aout2, Wind Direction Gain</td>
<td>0.044444 mA/°</td>
<td>0.055556 mA/°</td>
<td>aSU,f=0.044444<cr><lf></td>
</tr>
<tr>
<td>Aout2, Wind Direction Offset</td>
<td>4 mA</td>
<td>0 mA</td>
<td>aSU,g=4<cr><lf></td>
</tr>
<tr>
<td>Aout2, Wind Direction Minimum</td>
<td>0 mA</td>
<td>0 mA</td>
<td>aSU,h=0<cr><lf></td>
</tr>
<tr>
<td>Aout2, Wind Direction Maximum</td>
<td>22 mA</td>
<td>22 mA</td>
<td>aSU,j=22<cr><lf></td>
</tr>
<tr>
<td>Aout2, Wind Direction Error Indication</td>
<td>2 mA</td>
<td>22 mA</td>
<td>aSU,k=2<cr><lf></td>
</tr>
</tbody>
</table>
You can configure output scaling or transfer function settings in many ways by changing the custom gain and offset. The basic measurement units are m/s and degrees. The physical output unit is A. The following formula shows the impact of gain and offset values on the produced output:

\[o = y_0 + k \times s \]

where

\(o \) = Produced analog output (A)
\(s \) = Measured wind speed or direction (in m/s or °)
\(k \) = Selected gain value
\(y_0 \) = Selected offset value

Analog Output Signal for Wind Speed Channel

The analog interfaces setup, default configuration:
Current output 4 ... 20 mA, offset 4 mA
4 mA = 0 m/s
20 mA = 60 m/s (0,266667 mA/m/s)
Error indication sets output to 2 mA.

The analog interfaces setup, configuration 2:
Current output 0 ... 20 mA, offset 0 mA
0 mA = 0 m/s
20 mA = 60 m/s (0.333333 mA/m/s)
Error indication sets output to 22 mA.
Analog Output Signal for Wind Direction Channel

Analog interfaces setup default configuration:
Current output 4 ... 20 mA, offset 4 mA
4 mA = 0 degree
20 mA = 360 degree (0,044444 mA/°)
Error indication sets output to 2 mA

Analog interfaces setup, configuration 2:
Current output degree 0 ... 20 mA, offset 0 mA
0 uA = 0 degree
20 mA = 360 degree (0,055556 mA/°)
Error indication sets output to 22 mA

Enabling or Disabling Analog Output

When changing the analog output setting, the setting is applied after the transmitter reset. When analog output is in use, the serial port does not work but the service connector does.
The 12th bit from left determines if analog output is enabled:

- Analog output enabled at the factory:
 0XF,f=111111111110000
- Analog output disabled at the factory:
 0XF,f=111111111110000

You can enable or disable analog output with the aWU,R= command.

- To enable analog output: Change bit 7 to 1.
 0WU,R=111111111111100
- To disable analog output: Change bit 7 to 0.
 0WU,R=1111110111111100

Table 25 aWU Setting Fields [R]

<table>
<thead>
<tr>
<th>Normal message</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>st bit (most left)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Analog output mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite message</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>st bit (most left)</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| & delimiter | 10 | | | | | | | | |

Table 25 aWU Setting Fields [R]

<table>
<thead>
<tr>
<th>Normal message</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>st bit (most left)</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Analog output mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite message</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>st bit (most left)</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| & delimiter | 10 | | | | | | | | |
CHAPTER 9
MAINTENANCE

This chapter contains instructions for basic maintenance of the WXT530 Series transmitters.

Cleaning

To ensure the accuracy of measurement results, clean the transmitter when it gets contaminated. Remove leaves and other such particles from the precipitation sensor and clean the transmitter carefully with a soft, lint-free cloth moistened with mild detergent.

CAUTION
Be very careful when cleaning the wind sensors. Do not rub or twist the sensors.
Replacing the PTU Module

To replace the PTU module:

1. Turn the power off. Loosen the three mounting screws at the bottom assembly of the transmitter and pull them out.

<table>
<thead>
<tr>
<th>WXT536</th>
<th>WXT535</th>
<th>WXT534</th>
<th>WXT533</th>
<th>WXT532</th>
<th>WXT531</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 39 Replacing PTU Module

1 = Fixing screws
2 = Top of transmitter
3 = PTU module
4 = Latch
5 = Flat cable
6 = O-ring
2. Turn out the top of the transmitter.
3. Release the small white latch and remove the PTU module.
4. Remove the vacuum bag protecting the PTU module. Connect the new PTU module. Avoid touching the white filter cap with your hands.
5. Turn the top back in. Make sure the flat cable does not get stuck or squeezed between the top and the funnel for the flat cable and it is properly connected.
6. If the O-rings are damaged, replace them with new ones. Tighten the mounting screws.

 To make sure that the radiation shield stays straight, do not tighten the screws all the way in one go. Do not overtighten.

Technical Support

For technical questions, contact the Vaisala technical support by e-mail at helpdesk@vaisala.com. Provide at least the following supporting information:

- Name and model of the product in question
- Serial number of the product
- Name and location of the installation site
- Name and contact information of a technically competent person who can provide further information on the problem.

For Vaisala Service Center contact information, see www.vaisala.com/servicecenters
CHAPTER 10
TROUBLESHOOTING

This chapter describes common problems, their probable causes and remedies, and includes contact information for technical support.

Table 26 Data Validation

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind measurement failure. Both the speed and direction units are replaced by a # sign or the data values are irrelevant.</td>
<td>Blockage (trash, leaves, branches, bird, snow, ice) between the wind transducers. Incorrect <cr><lf> settings in the terminal program.</td>
<td>Remove the blockage, and check that the wind transducers are not damaged. If the blockage is ice or snow, it will melt after some time if heating is enabled. Time for clearance depends on the severity of the weather event. If birds are causing the blockage, consider using the bird spike kit. In ASCII and NMEA protocols both <cr> and <lf> are required after each command. Check that your terminal program sends both when pressing enter. Note: The direction unit is # for the wind speeds less than 0.05 m/s.</td>
</tr>
<tr>
<td>Pressure, humidity or temperature measurement failure. The unit is replaced by a # sign or the data values are irrelevant.</td>
<td>The PTU module may not be properly connected. There may be water in the PTU module.</td>
<td>Ensure the proper connection of the PTU module. Remove and dry the module.</td>
</tr>
</tbody>
</table>
Table 27 Communication Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No response to any commands.</td>
<td>Wrong wiring or operation voltage not connected.</td>
<td>Check the wiring and operation voltage. See Chapter 5 Wiring and Power Management, on page 53. Connect the service cable, use the communication settings 19200,8 N,1. Check the serial port settings of the device with Configuration Tool or with terminal program. Use command aXU! (SDI-12) or aXU<cr><lf> (ASCII/NMEA). Change the values if needed. A software/hardware reset is needed to validate the changes. When you have no service cable, try typing address query commands ?! and ?<cr><lf> with different serial settings in terminal program. When the communication parameters match, the device responds with its address. The settings can now be changed using aXU! (SDI-12) or aXU<cr><lf> (ASCII/NMEA) commands. A software/hardware reset is needed to validate the changes. In ASCII and NMEA protocols both <cr> and <lf> are required after each command. Check that your terminal program sends both when pressing enter.</td>
</tr>
<tr>
<td>Incorrect <cr><lf> settings in the terminal program.</td>
<td>Incorrect <cr><lf> settings in the terminal program.</td>
<td></td>
</tr>
<tr>
<td>Connection works but data messages not available.</td>
<td>Wrong device address in a SDI-12 command or a mistyped SDI-12 command (in SDI-12 a mistyped command is in no way responded). A command mistyped in ASCII/NMEA mode while error messaging/text messages is disabled (aSU,S=N).</td>
<td>Request the device address with ?! command and then retype the command now with the correct address. Check the data query commands. See Chapter 7 Retrieving Data Messages, on page 83. Enable the error messaging using the Vaisala Configuration Tool or any terminal by setting aSU,S=Y, then try the command again.</td>
</tr>
</tbody>
</table>
Table 27 Communication Problems (Continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible causes</th>
<th>Action(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data messages are not in expected format.</td>
<td>The communication protocol may not be the one you want.</td>
<td>Check the communication protocol of the device by using the Vaisala Configuration Tool or any terminal with command <code>aXU,M!</code> (SDI-12) <code>aXU,M<cr><lf></code> (ASCII/NMEA) and change it if needed. See Chapter 6 Connection Options, on page 73.</td>
</tr>
<tr>
<td>Some parameters are missing from the data messages.</td>
<td>The formatting of the data messages is not what you expect.</td>
<td>Format the data messages of the concern by using the Vaisala Configuration Tool or any terminal program. See Chapter 8 Sensor and Data Message Settings, on page 127.</td>
</tr>
<tr>
<td>An error message as a response to a command.</td>
<td>Refer to Error Messaging/Text Messages on page 170.</td>
<td>Refer to Error Messaging/Text Messages on page 170.</td>
</tr>
<tr>
<td>The transmitter keeps sending the message "TX Sync/address error".</td>
<td>The polling address and the transmitter address do not match. The transmitter is on an RS-485 bus with other polled devices and Error Messages are enabled.</td>
<td>Set correct address either for the transmitter or to the polling request. Disable the Error Messages with the command <code>aSU,S=N <cr><lf></code></td>
</tr>
<tr>
<td>mA messages cannot be found.</td>
<td>No mA output ordered.</td>
<td>You need to specify the mA option when you place the order.</td>
</tr>
<tr>
<td>Analog input messages are missing.</td>
<td>Analog input messages are not enabled.</td>
<td>Enable analog input messages. See Enabling or Disabling Analog Output, on page 160</td>
</tr>
<tr>
<td>Precipitation messages missing.</td>
<td>No precipitation measurement in models WXT534 and WXT532.</td>
<td></td>
</tr>
</tbody>
</table>
Self-Diagnostics

Error Messaging/Text Messages

The transmitter sends a text message when certain type of errors occur. This function works in all communication modes except in the SDI-12 mode. You may disable error messaging by using the supervisor message aSU, S=N. See Changing the Settings (aSU) on page 146.

Examples:

0R1!0TX,Unable to measure error<cr><lf> (request of wind data while all the wind parameters were disabled from the wind message)

1XU!0TX,Sync/address error<cr><lf> (wrong device address. Ask the correct address with ? or ?! command.

0XP!0TX,Unknown cmd error<cr><lf>

0xUabc!0TX,Use chksum CCb<cr><lf> (wrong checksum applied to the 0xU command)
Chapter 10 Troubleshooting

See also Chapter 10 Troubleshooting, on page 167.

NOTE

When a WXT530 Series transmitter is used on an RS-485 bus with other polled devices, the error messaging feature must be disabled using the command: \texttt{0SU,S=N\textless crlrf>}.

Table 28 Error Messaging/Text Messages

<table>
<thead>
<tr>
<th>Text message identifier (in NMEA 0183 v3.0 protocol only)</th>
<th>Text Message</th>
<th>Interpretation and action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Unable to measure error</td>
<td>The requested parameters are not activated in the message and check the parameter section fields. See Chapter 8 Sensor and Data Message Settings, on page 127.</td>
</tr>
<tr>
<td>02</td>
<td>Sync/address error</td>
<td>The device address in the beginning of the command is invalid. Ask the device address with the ?I (SDI-12) or ?<cr><lf> (ASCII and NMEA) command and retype the command with the correct address.</td>
</tr>
<tr>
<td>03</td>
<td>Unknown cmd error</td>
<td>The command is not supported, use the correct command format. See Chapter 7 Retrieving Data Messages, on page 83.</td>
</tr>
<tr>
<td>04</td>
<td>Profile reset</td>
<td>Checksum error in configuration settings during power-up. Factory settings used instead.</td>
</tr>
<tr>
<td>05</td>
<td>Factory reset</td>
<td>Checksum error in calibration settings during power-up. Factory settings used instead.</td>
</tr>
<tr>
<td>06</td>
<td>Version reset</td>
<td>New software version in use.</td>
</tr>
<tr>
<td>07</td>
<td>Start-up</td>
<td>Software reset. Program starts from the beginning.</td>
</tr>
<tr>
<td>08</td>
<td>Use chksum xxx</td>
<td>Given checksum not correct for the command. Use the proposed checksum.</td>
</tr>
<tr>
<td>09</td>
<td>Measurement reset</td>
<td>The ongoing measurement of all the sensors interrupted and started from the beginning.</td>
</tr>
<tr>
<td>10</td>
<td>Rain reset</td>
<td>The precipitation sensor counter reset.</td>
</tr>
<tr>
<td>11</td>
<td>Inty reset</td>
<td>Precipitation sensor intensity counter reset.</td>
</tr>
</tbody>
</table>

Rain and Wind Sensor Heating Control

The supervisor message \texttt{aSU} shows you continuously monitored information about rain and wind sensor heating (heating temperature Th and heating voltage Vh). See Supervisor Message on page 144.
The heating temperature should stay above 0 °C when the heating is on (except in extremely cold conditions where the heating power is not sufficient). The heating voltage V_h should correspond to the heating voltage supplied. If there is a remarkable deviation, check the wiring. Note that wire gauge should be large enough to avoid remarkable voltage drop in the cable.

NOTE

In case AC or full-wave rectified AC is used for the heating, the V_h measurement behaves as follows:

While heating is off, V_h indicates the positive peak value (V_p) of the heating voltage waveform.

While heating is on, V_h indicates:
- $0.35 \times V_p$ in case of AC voltage
- $0.70 \times V_p$ in case of full-wave rectified AC voltage

Operating Voltage Control

The supervisor message aSU shows you continuously monitored supply voltage level (V_s). In case of deviations between the supplied voltage and monitored voltage, check the wiring and the power supply. See Supervisor Message on page 144.

Missing Readings and Error Indication

If the transmitter is not able to measure the wind, it indicates a missing reading in the output. The most common reasons for measurement problems are foreign objects, such as ice, birds, or other foreign objects, on the line of measurement, or sound reflections from nearby objects, such as wind tunnel walls.
This chapter provides the technical data of the WXT530 Series transmitters.

Performance

Table 29 Barometric Pressure

<table>
<thead>
<tr>
<th>Property</th>
<th>Description/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>600 ... 1100 hPa</td>
</tr>
<tr>
<td>Accuracy (for sensor element)</td>
<td>±0.5 hPa at 0 ... +30 °C (+32 ... +86 °F)</td>
</tr>
<tr>
<td></td>
<td>±1 hPa at -52 ... +60 °C (-60 ... +140 °F)</td>
</tr>
<tr>
<td>Output resolution</td>
<td>0.1 hPa, 10 Pa, 0.001 bar, 0.1 mmHg, 0.01 inHg</td>
</tr>
<tr>
<td>Units available</td>
<td>hPa, Pa, bar, mmHg, inHg</td>
</tr>
</tbody>
</table>

Table 30 Air Temperature

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>-52 ... +60 °C (-60 ... +140 °F)</td>
</tr>
<tr>
<td>Accuracy (for sensor element)</td>
<td>±0.3 °C (0.17 °F)</td>
</tr>
<tr>
<td>at +20 °C (+68 °F)</td>
<td></td>
</tr>
<tr>
<td>Output resolution</td>
<td>0.1 °C (0.1 °F)</td>
</tr>
<tr>
<td>Units available</td>
<td>°C, °F</td>
</tr>
</tbody>
</table>

- A naturally aspirated radiation shield is applied which can affect readings in calm wind.
- A naturally aspirated radiation shield is applied which can affect readings in calm wind.

Table 31 Relative Humidity

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 ... 100 %RH</td>
</tr>
</tbody>
</table>
| Accuracy (for sensor element) | ±3 %RH at 0 ... 90 %RH
| | ±5 %RH at 90 ... 100 %RH |
| Output resolution | 0.1 %RH |
| PTU Measuring interval | 1 ... 3600 s (= 60 min), at one second steps |

Table 32 Precipitation

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>Cumulative accumulation after the latest auto or manual reset</td>
</tr>
<tr>
<td>Collecting area</td>
<td>60 cm²</td>
</tr>
<tr>
<td>Output resolution</td>
<td>0.01 mm (0.001 in)</td>
</tr>
<tr>
<td>Field accuracy for long-term accumulation</td>
<td>Better than 5 %, weather dependent</td>
</tr>
<tr>
<td>Units available</td>
<td>mm, in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rain duration</th>
<th>Counting each 10-second increment whenever droplet detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>output resolution</td>
<td>10 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rain intensity</th>
<th>Running one minute average in 10 second steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>0 ... 200 mm/h (broader range with reduced accuracy)</td>
</tr>
<tr>
<td>Units available</td>
<td>mm/h, in/h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hail</th>
<th>Cumulative amount of hits against collecting surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output resolution</td>
<td>0.1 hit/cm², 1 hit/in², 1 hit</td>
</tr>
<tr>
<td>Units available</td>
<td>hits/cm², hits/in², hits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hail duration</th>
<th>Counting each 10-second increment whenever hailstone detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output resolution</td>
<td>10 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hail intensity</th>
<th>One minute running average in 10-second steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output resolution</td>
<td>0.1 hit/cm²h, 1 hit/in²h, 1 hit/h</td>
</tr>
<tr>
<td>Units available</td>
<td>hits/cm²h, hits/in²h, hits/h</td>
</tr>
</tbody>
</table>

- Due to the nature of the phenomenon, deviations caused by spatial variations may exist in precipitation readings, especially in short time scale. The accuracy specification does not include possible wind-induced error.

- Precipitation measurement is performed for liquid precipitation.
Table 33 Wind

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind speed</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>0 ... 60 m/s</td>
</tr>
<tr>
<td>Response time</td>
<td>0.25 s</td>
</tr>
<tr>
<td>Available variables</td>
<td>Average, maximum, and minimum</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±3 % at 10 m/s</td>
</tr>
<tr>
<td>Output resolution</td>
<td>0.1 m/s (km/h, mph, knots)</td>
</tr>
<tr>
<td>Units available</td>
<td>m/s, km/h, mph, knots</td>
</tr>
<tr>
<td>Wind direction</td>
<td></td>
</tr>
<tr>
<td>Azimuth</td>
<td>0 ... 360°</td>
</tr>
<tr>
<td>Response time</td>
<td>0.25 s</td>
</tr>
<tr>
<td>Available variables</td>
<td>Average, maximum, and minimum</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±3.0° at 10 m/s</td>
</tr>
<tr>
<td>Output resolution</td>
<td>1°</td>
</tr>
<tr>
<td>Measurement frame</td>
<td></td>
</tr>
<tr>
<td>Averaging time</td>
<td>1 ... 3600 s (= 60 min), at 1 s steps, on the basis of samples taken at 4, 2, or 1 Hz rate (configurable)</td>
</tr>
<tr>
<td>Update interval</td>
<td>1 ... 3600 s (= 60 min), at 1 s steps</td>
</tr>
</tbody>
</table>

- NTP condition applied for wind tunnel testing.
Inputs and Outputs

Table 34 Inputs and Outputs

<table>
<thead>
<tr>
<th>Property</th>
<th>Description/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage</td>
<td>6 ... 24 VDC (-10 % ... +30 %))</td>
</tr>
<tr>
<td>Average current consumption</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.1 mA @ 12 VDC (SDI-12 standby)</td>
</tr>
<tr>
<td>Typical</td>
<td>3 mA @ 12 VDC (with default measuring intervals)</td>
</tr>
<tr>
<td>Maximum</td>
<td>15 mA @ 5 VDC (with constant measurement of all parameters)</td>
</tr>
<tr>
<td>Heating voltage</td>
<td>DC, AC, full-wave rectified AC</td>
</tr>
<tr>
<td>Typical heating current</td>
<td>12 ... 24 VDC (-10 % ... +30 %)</td>
</tr>
<tr>
<td></td>
<td>12 ... 17 VACrms (-10 % ... +30 %)</td>
</tr>
<tr>
<td></td>
<td>12 VDC: 0.8 A</td>
</tr>
<tr>
<td></td>
<td>24 VDC: 0.4 A</td>
</tr>
<tr>
<td></td>
<td>12 VACrms: 1.1 A</td>
</tr>
<tr>
<td></td>
<td>17 VACrms: 0.8 A</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>SDI-12, RS-232, RS-485, RS-422</td>
</tr>
<tr>
<td>Communication protocols</td>
<td>SDI-12 v1.3, ASCII automatic & polled, NMEA 0183 v3.0 with query option</td>
</tr>
</tbody>
</table>

Table 35 Analog Input Options

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Element</th>
<th>Range</th>
<th>Input</th>
<th>Excitation</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature PT1000</td>
<td>Resistor</td>
<td>800 ... 1330 Ω</td>
<td>2-wire</td>
<td>2.5 V</td>
<td>16 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Radiation K&Z CMP3</td>
<td>Thermopile</td>
<td>0 ... 25 mV</td>
<td>4 MΩ</td>
<td>-</td>
<td>12 bits</td>
</tr>
<tr>
<td>Level measurement IRU</td>
<td>Voltage</td>
<td>0 ... 2.5 V</td>
<td>> 10 kΩ</td>
<td>-</td>
<td>12 bits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipping Bucket RG13</td>
<td>Frequency</td>
<td>0 ... 100 Hz</td>
<td>18 kΩ</td>
<td>3.5 V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 10 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The input can be wiring type, input impedance, or pull-up resistor value.
When the analog output option is applied, digital communication is not available.

General Conditions

Table 37 General Conditions

<table>
<thead>
<tr>
<th>Property</th>
<th>Description/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing protection class</td>
<td>IP65 (without mounting kit)</td>
</tr>
<tr>
<td></td>
<td>IP66 (with mounting kit)</td>
</tr>
<tr>
<td>Temperature-operative</td>
<td>-52 ... +60 °C (-60 ... +140 °F)</td>
</tr>
<tr>
<td>storage</td>
<td>-60 ... +70 °C (-76 ... +158 °F)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>0 ... 100 %RH</td>
</tr>
<tr>
<td>Pressure</td>
<td>600 ... 1100 hPa</td>
</tr>
<tr>
<td>Wind</td>
<td>0 ... 60 m/s</td>
</tr>
</tbody>
</table>

- Due to the measurement frequency used in the sonic transducers, RF interference in the 200 ... 400 kHz range can disturb wind measurement.
- Any temporary element or object, such as snow, ice, or a bird, blocking the measurement path between the ultrasonic transducer heads can affect the wind measurement accuracy or even invalidate the output data.
- Extreme operating conditions can alter sensor performance temporarily.

CAUTION

Make sure that you power the sensor after installation. Storing the sensor outdoors without a proper package or not powering up after installation can affect the sensor’s expected lifespan.

NOTE

Select a heated sensor model if you operate the sensor in humid conditions.
NOTE

Select a heated sensor model if you operate the sensor in temperatures below 0 °C (+32 °F).

<table>
<thead>
<tr>
<th>Table 38 Electromagnetic Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicable Standard</td>
</tr>
<tr>
<td>CISPR 22</td>
</tr>
<tr>
<td>CISPR 22</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
</tr>
<tr>
<td>IEC 60945</td>
</tr>
</tbody>
</table>

- Performance:
A = Normal performance
B = Temporary degradation (self-recoverable)
C = Temporary degradation (operator intervention needed)
D = not recoverable
- Within frequency range 600 ... 700 MHz immunity for PTU is 8 V/m.
Materials

Table 39 Materials

<table>
<thead>
<tr>
<th>Property</th>
<th>Description/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation shield, top, and bottom parts</td>
<td>Polycarbonate + 20 % glass fiber</td>
</tr>
<tr>
<td>Precipitation sensor plate</td>
<td>Stainless steel (AISI 316)</td>
</tr>
<tr>
<td>Weight</td>
<td>650 g (1.43 lbs.)</td>
</tr>
</tbody>
</table>

General

Table 40 General

<table>
<thead>
<tr>
<th>Property</th>
<th>Description/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-diagnostic</td>
<td>Separate supervisor message, unit/status fields to validate measurement stability</td>
</tr>
<tr>
<td>Start-up</td>
<td>Automatic, <5 seconds from power on to the first valid output</td>
</tr>
</tbody>
</table>
Options and Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaisala Configuration Tool and USB service cable SP</td>
<td>220614</td>
</tr>
<tr>
<td>Cable USB RS-232/RS-485 1.4 m USB M12 SP</td>
<td>220782</td>
</tr>
<tr>
<td>Cable 2 m shielded 8-pin M12 SP</td>
<td>222287</td>
</tr>
<tr>
<td>Cable 10 m shielded 8-pin M12 SP</td>
<td>222288</td>
</tr>
<tr>
<td>Cable 10 m shielded 8-pin M12, connectors on both ends SP</td>
<td>215952</td>
</tr>
<tr>
<td>Cable 40 m shielded 12-pin, open end wires SP</td>
<td>217020</td>
</tr>
<tr>
<td>Bushing and grounding accessory kit</td>
<td>222109</td>
</tr>
<tr>
<td>Mounting kit</td>
<td>212792</td>
</tr>
<tr>
<td>Mounting accessory between Mounting kit and 60 mm tube</td>
<td>WMSF1X60</td>
</tr>
<tr>
<td>Bird Kit</td>
<td>212793</td>
</tr>
<tr>
<td>Vaisala surge protector, no connectors</td>
<td>WSP150</td>
</tr>
<tr>
<td>Vaisala surge protector with connectors for 220782 and 215952</td>
<td>WSP152</td>
</tr>
<tr>
<td>Nokeval converter</td>
<td>229104</td>
</tr>
<tr>
<td>Nokeval programming kit</td>
<td>229110</td>
</tr>
<tr>
<td>WXT radiation shield set SP</td>
<td>218817SP</td>
</tr>
<tr>
<td>WXT PTU module SP</td>
<td>WXTPTUSP</td>
</tr>
<tr>
<td>WXT bottom connector kit SP</td>
<td>224171</td>
</tr>
<tr>
<td>Analog input connectors SP, IP67, 8P, M12, Shielded</td>
<td>214273</td>
</tr>
<tr>
<td>WXT530 bottom assembly with digital board SP</td>
<td>WXT530BOTTOMDIGISP</td>
</tr>
<tr>
<td>WXT530 bottom assembly with analog input board SP</td>
<td>WXT530BOTTOMANAINSP</td>
</tr>
<tr>
<td>WXT530 bottom assembly with mA output board SP</td>
<td>WXT530BOTTOMMAOUTSP</td>
</tr>
</tbody>
</table>
Type Label

All WXT530 Series transmitters can be identified from the type label.

Figure 40 Type Label

1 = Product code
2 = Serial number in bar code
3 = Place of manufacture
4 = Symbols indicating measurement options included:
P = pressure
T = temperature
U = humidity
R = precipitation
W = wind
Dimensions (mm/inch)

Figure 41 WXT536 Dimensions
Figure 42 WXT535 and WXT534 Dimensions
Figure 43 WXT533 and WXT532 Dimensions
Figure 44 WXT531 Dimensions
Figure 45 Mounting Kit Dimensions

1 = Mounting kit with adapter sleeve for Ø26.7 mm mast tube
2 = Mounting kit without adapter sleeve for Ø30 mm mast tube
Connecting Several Transmitters on Same Bus

There are two options for connecting several transmitters on the same bus:

1. Using SDI-12 serial interface and communication protocol, and
2. Using RS-485 serial interface and one of the following communication protocols: ASCII or NMEA 0183 v3.0.

SDI-12 Serial Interface

Wiring

1. Make the SDI-12 wiring in transmitter as described in Chapter 5 Wiring and Power Management, on page 53. Remember to combine the two "Data in/out" wires of each transmitter either in the internal screw terminal inside or outside the transmitter.

2. In the data logger end, combine the "GND for data" wires of each transmitter to the logger "GND for data" wire. Connect the "Data in/out" wires of each transmitter to the logger "Data" wire.
Communication Protocol

Set the communication protocol SDI-12 v 1.3 (aXU,C=1,M=S) or SDI-12 v1.3 continuous (aXU,C=1,M=R).

Assign the transmitters on the bus with different addresses (for example: aXU,A=0,1,2, ...). After that, the transmitters on the bus do not respond to the commands not assigned to them nor to the data messages sent by the other transmitters.

Example (A bus with three WXT530 Series transmitters):

WXT530 #1 communication settings:
0XXU,A=0,M=S,C=1,B=1200,D=7,P=E,S=1, L=25

WXT530 #2 communication settings:
1XXU,A=1,M=S,C=1,B=1200,D=7,P=E,S=1, L=25

WXT530 #3 communication settings:
2XXU,A=2,M=S,C=1,B=1200,D=7,P=E,S=1, L=25

If simultaneous measurements of the different units are needed, Start concurrent measurement commands aC and aCC should be use for all devices. If the measurements are to be performed consecutively for only one unit at time, in addition to these also Start measurement commands aM and aMC can be used. Start continuous measurement commands aR1, aR2, aR3, aR5, aR, aRC1, aRC2, aRC3, aRC5 and aRC available only in SDI-12 continuous protocol (aXU,M=R) can be used either for simultaneous measurements of the units or consecutive measurements for one unit at time. See also SDI-12 Protocol on page 100.
RS-485 Serial Interface

Wiring

1. Make the RS-485 wiring of the transmitter as described in Chapter 5 Wiring and Power Management, on page 53.
2. In the data logger end, combine the "Data +" wires of each transmitter to the logger "Data +" wire. Connect the "Data -" wires of each transmitter to the logger "Data -" wire.

Communication Protocol

Set the communication protocol to ASCII polled (with or without CRC) or NMEA query. When using NMEA query, the wind message should be set to XDR (aWU,N=T).

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No matter which communication protocol, ASCII polled or NMEA query is chosen, the error messaging parameter of the supervisor message must be inactivated with aSU,S=N for each transmitter on the bus in order to prevent the units responding to the commands not assigned to them.</td>
</tr>
</tbody>
</table>

ASCII, Polled

Assign different addresses to the transmitters on the bus (for example, aXU,A=0,1,2, ...).

Example (a bus with three transmitters):

WXT530 #1 communication settings:
0XU,A=0,M=P,C=3,I=0,B=19200,D=8,P=N,S=1,L=25

WXT530 #2 communication settings:
1XU,A=1,M=P,C=3,I=0,B=19200,D=8,P=N,S=1,L=25

WXT530 #3 communication settings:
2XU,A=2,M=P,C=3,I=0,B=19200,D=8,P=N,S=1,L=25
Example (composite data message queries to the sensors 1 and 3 are assigned as follows):

0R0<cr><lf>
1R0<cr><lf>
2R0<cr><lf>

NMEA 0183 v3.0, Query

The NMEA 0183 query messages do not contain device address information. Individual query commands can thus not be directed to different transmitters. Instead, a specific Time Slot method can be used for receiving data from several transmitters on the bus, just with a single query command.

To generate different time slots, each transmitter is given an individual delay for its query response, by using the RS-485 line delay parameter \texttt{aXU,L}. This parameter defines the time (in milliseconds) between the last character of the query and the first character of the response from the transmitter.

Example (a bus with three transmitters):

WXT530 #1 communication settings:
0XU,A=0,M=Q,C=3,I=0,B=4800,D=8,P=N,S=1,L=25

WXT530 #2 communication settings:
0XU,A=0,M=Q,C=3,I=0,B=4800,D=8,P=N,S=1,L=1000

WXT530 #3 communication settings:
0XU,A=0,M=Q,C=3,I=0,B=4800,D=8,P=N,S=1,L=2000

Now, when the XDR-query command \texttt{$--WIQ,XDR*2D<cr><lf>$} is sent, WXT530#1 responds after 25 ms, WXT530 #2 after 1000 ms and WXT530 #3 responds after 2000 ms. The sufficient delays depend on the maximum number of characters in the response messages and the baud rate. Note that all the transmitters are assigned with the same address. Hence the data logger, after sending the query, shall sort out the response messages on the basis of the individual response times.

To gain even more addressability transducer ID information provided in the XDR response messages can also be used. If WXT530 address is set to 0 (\texttt{aXU,A=0}) and all parameters are chosen except Rain peak
intensity and Hail peak intensity in the precipitation message, the response to the XDR-query $--WIQ,XDR*2D
</noscript> will be like:

$WIXDR,A,316,D,0,A,326,D,1,A,330,D,2,S,0.1,M,0,S,0.1,M,1,S,0.1,M,2*57
</noscript>

$WIXDR,C,24.0,C,0,C,25.2,C,1,H,47.4,P,0,P,1010.1,H,0*54
</noscript>

$WIXDR,V,0.000,I,0,Z,10,s,0,R,0.01,I,0,V,0.0,M,1,Z,0,s,1,R,0.0,M,1*51
</noscript>

$WIXDR,C,25.8,C,2,U,10.7,N,0,U,10.9,V,1,U,3.360,V,2*7D
</noscript>

For the transducer IDs, see NMEA 0183 V3.0 Protocol on page 113.

The maximum transducer ID is three when the transmitter address is 0. Hence, assigning address 4 for the second and address 8 for the third transmitter on the bus the following responses to the XDR-query $--WIQ,XDR*2D
</noscript> will be obtained from these transmitters (same message parameter configuration):

The second transmitter (address 4):

$WIXDR,A,330,D,4,A,331,D,5,A,333,D,6,S,0.1,M,4,S,0.1,M,5,S,0.2,M,6*55
</noscript>

$WIXDR,V,0.000,I,4,Z,0,s,4,R,0.00,I,4,V,0.0,M,5,Z,0,s,5,R,0.0,M,5*67
</noscript>

$WIXDR,C,25.8,C,6,U,10.6,N,4,U,10.9,V,5,U,3.362,V,6*78
</noscript>

The third transmitter (address 8):

$WIXDR,A,341,D,8,A,347,D,9,A,357,D,10,S,0.1,M,8,S,0.2,M,9,S,0.2,M,10*53
</noscript>

$WIXDR,C,23.5,C,8,C,24.3,C,9,H,49.3,P,8,P,1010.1,H,8*5F
</noscript>

$WIXDR,V,0.000,I,8,Z,0,s,8,R,0.00,I,8,V,0.0,M,9,Z,0,s,9,R,0.0,M,9*61
</noscript>
Now the response messages of all three transmitters can be recognized and parsed by the data logger.

NOTE

The transmitter address may consist of letter characters but the transducer IDs in the NMEA XDR messages can only be numbers. The addresses given in letters will show in the transducer IDs in the following way: transmitter address = A => transducer ID = 10, B => 11, a => 36, b => 37 etc.

NMEA 0183 v3.0 Query with ASCII Query Commands

You can use ASCII query commands `aR1`, `aR2`, `aR3`, `aR5`, `aR`, `aR0` and their CRC-versions `ar1`, `ar2`, `ar3`, `ar5`, `ar`, and `ar0` also in NMEA 0183 protocol. The responses to these commands will be in standard NMEA 0183 format and the transmitters are assigned with different addresses (for example: `aXU,A=0,1,2, ...`). The RS-485 line delays are not needed.

Example (a bus with three transmitters, data requests with combined data message query commands; the same message parameter configuration as in the previous example):

WXT530 #1 communication settings:

```
0XU,A=0,M=Q,C=3,I=0,B=4800,D=8,P=N,S=1,L=25
```

WXT530 #2 communication settings:

```
0XU,A=1,M=Q,C=3,I=0,B=4800,D=8,P=N,S=1,L=25
```

WXT530 #3 communication settings:

```
0XU,A=2,M=Q,C=3,I=0,B=4800,D=8,P=N,S=1,L=25
```

The query for WXT530 #1 and the response:

```
0R<cr><lf>
SWIXDR,A,316,D,0,A,326,D,1,A,330,D,2,S,0,1,M,0,S,0,1,M,1,S,0,1,M,2*57<cr><lf>
```
The query for WXT530 #2 and the response:
1R

The query for WXT530 #3 and the response:
2R

If needed, for making the transducers IDs distinguishable, device addresses 0, 4, 8 can be used as described in the previous section.
SDI-12 is a standard for interfacing data recorders with microprocessor-based sensors. The name stands for serial/digital interface at 1200 baud. More information of the complete SDI-12 standard text is available from the SDI-12 website: www.sdi-12.org.

SDI-12 Electrical Interface

The SDI-12 electrical interface uses the SDI-12 bus to transmit serial data between SDI-12 data recorders and sensors. The SDI-12 bus is the cable that connects multiple SDI-12 devices. This is a cable with three conductors:

- Serial data line
- Ground line
- 12 V line.

The SDI-12 bus can have at least 10 sensors connected to it. The bus topology is a parallel connection, where each of the three wires of different sensors are connected in parallel.
SDI-12 Communications Protocol

SDI-12 data recorders and sensors communicate by an exchange of ASCII characters on the data line. The data recorder sends a break to wake up the sensors on the data line. A break is continuous spacing on the data line for at least 12 milliseconds. The data recorder then sends a command. The sensor, in turn, returns the appropriate response. Each command is for a specific sensor. The first character of each command is a unique sensor address that specifies with which sensor the recorder wants to communicate. Other sensors on the SDI-12 bus ignore the command and return to low-power standby mode. When a data recorder tells a sensor to start its measurement procedure, the recorder does not communicate with any other sensor until the data collection from the first sensor is complete.

A typical recorder/sensor measurement sequence proceeds in the following order:

1. The data recorder wakes all sensors on the SDI-12 bus with a break.
2. The recorder transmits a command to a specific, addressed sensor, instructing it to make a measurement.
3. The addressed sensor responds within 15.0 ms returning the maximum time until the measurement data is ready and the number of data values it returns.
4. If the measurement is immediately available, the recorder transmits a command to the sensor instructing it to return the measurement(s). If the measurement is not ready, the data recorder waits for the sensor to send a request to the recorder, which indicates that the data is ready. The recorder then transmits a command to get the data.
5. The sensor responds, returning one or more measurements.

SDI-12 Timing

Figure 46 on page 197 shows a timing diagram for a SDI-12 command and its response. The tolerance for all SDI-12 timing is ±0.40 ms.

The exception to this is the time between the stop bit of one character and the start bit of the next character. The maximum time for this is 1.66 ms, with no tolerance.
- A data recorder transmits a break by setting the data line to spacing for at least 12 ms.

- The sensor does recognize a break condition for a continuous spacing time of less than 6.5 ms. The sensor will always recognize a break when the line is continuously spacing for more than 12 ms.

- When receiving a break, a sensor must detect 8.33 ms of marking on the data line before it looks for an address.

- A sensor must wake up from a low-power standby mode and be capable of detecting a start bit from a valid command within 100 ms after detecting a break.

- After a data recorder transmits the last character of a command, it must relinquish control of the data line within 7.5 ms.

Figure 46 Timing Diagram

- After receiving the break and the command, the addressed sensor sets the data line to marking at 8.33 ms and then sends the response (tolerance: -0.40 ms). The start bit of the first response byte must start within 15 ms after the stop bit of the last byte of the command (tolerance: +0.40 ms).

- After a sensor transmits the last character of a response, it must relinquish control of the data line within 7.5 ms (tolerance: +0.40 ms).

- No more than 1.66 ms of marking are allowed between the end of the stop bit and the start bit (for example between characters) on any characters in the command or the response (no tolerance.) This
permits a response to an M command to be sent within a 380 ms window.

- Sensors must return to a low-power standby mode after receiving an invalid address or after detecting a marking state on the data line for 100 ms (tolerance: +0.40 ms).

- When a recorder addresses a different sensor, or if the data line has been in the marking state for more than 87 ms, the next command must be preceded by a break.

NOTE

The low-power standby mode, in addition to being a low-power consumption state, is a protocol state and it takes a moment to leave that state.
The computation of the CRC is performed on the data response before parity is added. All operations are assumed to be on 16 bit unsigned integers. The least significant bit is on the right. Numbers preceded by 0x are in hexadecimal. All shifts shift in a zero. The algorithm is:

Initialize the CRC to zero. For each character beginning with the address, up to but not including the carriage return (<cr>), do as follows:

```
{ 
  Set the CRC equal to the exclusive OR of the character 
  and itself 
  for count =1 to 8 
  { 
    if the least significant bit of the CRC is one 
    { 
      right shift the CRC one bit 
      set CRC equal to the exclusive OR of 0xA001 and 
      itself 
    } 
    else 
    { 
      right shift the CRC one bit 
    } 
  } 
}
```
Encoding the CRC as ASCII Characters

The 16 bit CRC is encoded to three ASCII characters by using the following algorithm:

1st character = 0x40 OR (CRC shifted right 12 bits)

2nd character = 0x40 OR ((CRC shifted right 6 bits) AND 0x3F)

3rd character = 0x40 OR (CRC AND 0x3F)

The three ASCII characters are placed between the data and <cr><lf>. Parity is applied to all three characters, if selected for the character frame.

The CRC computation code is added to the end of the response, if the first letter of the command is sent by using lower case.

NMEA 0183 v3.0 Checksum Computation

The checksum is the last field in the NMEA sentence and follows the checksum delimiter character "*". It is the 8-bit exclusive OR of all characters in the sentence, including "," and "^" delimiters, between but not including the "$" or "!" and the "*" delimiters. The hexadecimal value of the most significant and least significant four bits of the result is converted to two ASCII characters (0-9,A-F) for transmission. The most significant character is transmitted first.
APPENDIX D
WIND MEASUREMENT AVERAGING METHOD

The following three figures represent the wind measurement averaging for different selections of communication protocol, wind measurement update interval (I) and averaging time (A). Scalar averaging is used for both wind speed and direction.

NOTE
Grey boxes indicate that the measurement is in progress during the corresponding second.
Update (= internal calculation) is always made in the end of the update interval.
In the auto sending protocols (ASCII automatic (+ CRC) and NMEA automatic) outputting the data messages is synchronized to take place immediately after the update.
In ASCII polled (+ CRC), NMEA query and SDI-12 continuous measurement protocols trying to request data before the update interval is completed will result in getting the data from the previous completed update interval.
Wind measurement sampling rate (4, 2, or 1 Hz) does not have any effect on the averaging scheme. It determines from how many samples the one second values seen in the figures are calculated.
Case 1

$I > A$, all communication protocols other than SDI-12 (aXU,M=S). In this example $I=5$ sec and $A=3$ sec.

Case 2

$I < A$, all communication protocols other than SDI-12 (aXU,M=S). In this example $I=2$ sec and $A=5$ sec.

Case 3

Communication protocol SDI-12 (aXU,M=S). In this example $A=3$ sec. I does not have any function in this protocol.

Figure 47 Wind Measurement Averaging Method
APPENDIX E

FACTORY CONFIGURATIONS

The factory configurations are read-only settings which cannot be modified.

For each settings command, the following information is shown:

- Command to retrieve the settings (ends to ! character)
- Example response from the transmitter
- Table describing the message contents
General Unit Settings

0XF!0XF,f=11111111&11100010,o=AAC1DB1A,c=A263,
i=HEL___,n=A3430012,2=2528,3=3512

Table 42 General Unit Settings

<table>
<thead>
<tr>
<th>Field Character</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Factory options</td>
<td>Selection of parameters</td>
</tr>
<tr>
<td>o</td>
<td>Order code</td>
<td>Ordering identity as delivered (10 characters)</td>
</tr>
<tr>
<td>c</td>
<td>Calibration date</td>
<td>Y=2003, A, B,...=2006, 2006, 1...52 = week, 1...7, weekday</td>
</tr>
<tr>
<td>i</td>
<td>Info</td>
<td>Factory signature (10 characters)</td>
</tr>
<tr>
<td>n</td>
<td>Device s/n</td>
<td>A,B,...=2005,2006..., 1..52 = week, 1...7 = weekday , 1...9999 = serial number</td>
</tr>
<tr>
<td>2</td>
<td>2.5 V reference</td>
<td>2500mV (default)</td>
</tr>
<tr>
<td>3</td>
<td>3.5 V reference</td>
<td>3500mV (default)</td>
</tr>
</tbody>
</table>

Wind Configuration Settings

0WF!0WF,g=A,l=N,t=A,0=273.00,1=273.01,2=273.00,3=273.00,4=273.00,5=273.00,a=45.1,b=50.2,u=54.9,v=63.1,x=65.1,y=65.1

Table 43 Wind Configuration Settings

<table>
<thead>
<tr>
<th>Field Character</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Strategy</td>
<td>A=All, N=North, E=East, S=South</td>
</tr>
<tr>
<td>l</td>
<td>Pulse length</td>
<td>N=Normal, auto, A=Adjusted on half, S=Short, E=Extended, T=Test</td>
</tr>
<tr>
<td>t</td>
<td>Single transducer mode</td>
<td>A=All, N=North, E=East, S=South</td>
</tr>
<tr>
<td>0..5</td>
<td>Zero adjustment</td>
<td>1...655.35 us (default 273.00 us)</td>
</tr>
<tr>
<td>a,b</td>
<td>Detect level btw. N and E</td>
<td>0...100 % (default 70 %)</td>
</tr>
<tr>
<td>u,v</td>
<td>Detect level btw. E and S</td>
<td>0...100 % (default 70 %)</td>
</tr>
<tr>
<td>x,y</td>
<td>Detect level btw. S and N</td>
<td>0...100 % (default 70 %)</td>
</tr>
</tbody>
</table>
Appendix E ___ Factory configurations

PTU Configuration Settings

0TF!0TF,n=A030432 <cr><lf>

Table 44 PTU Configuration Settings

<table>
<thead>
<tr>
<th>Field Character</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>PTU serial number</td>
<td>A,B,...=2005,2006,..., 1..52 = week, 1...7 = weekday, 1...9999 = serial number</td>
</tr>
</tbody>
</table>

Rain Configuration Settings

0RF!0RF,p=1.0,n=3.0,d=N,f=0<cr><lf>

Table 45 Rain Configuration Settings

<table>
<thead>
<tr>
<th>Field Character</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p,n</td>
<td>Positive and negative gain</td>
<td>0.1...25.5 (p=1.0, n=1.0)</td>
</tr>
<tr>
<td>d</td>
<td>Bypass all hits</td>
<td>Y=Enabled, N=(default) Disabled</td>
</tr>
<tr>
<td>f</td>
<td>Wind filter bypass</td>
<td>0,1...4 (0=wind depended, 1,2,3,4=threshold level)</td>
</tr>
</tbody>
</table>

Supervisor Settings

0SF!0SF,t=19.8,b=17159,l=-4.0,m=0.0,h=4.0<cr><lf>

Table 46 General Unit Settings

<table>
<thead>
<tr>
<th>Field Character</th>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>CPU temperature calibration temperature</td>
<td>°C</td>
</tr>
<tr>
<td>b</td>
<td>Direct ADC value of CPU temperature diode</td>
<td>0 ... 4096</td>
</tr>
<tr>
<td>l</td>
<td>Heater control gain</td>
<td>-100.0 ...[m] °C (default -4.0 °C)</td>
</tr>
<tr>
<td>m</td>
<td>Heating set point</td>
<td>°C</td>
</tr>
<tr>
<td>h</td>
<td>Not used</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX F
WIRING EXTERNAL SENSORS TO WXT536

This appendix provides you with information on connecting external sensors to WXT536.

Figure 48 Connecting External Sensors to WXT536
Connecting Snow Depth Sensor to WXT536

The following figure shows how to connect a snow depth sensor to the transmitter.

NOTE
IRU-9429 needs excitation voltage set to a 5 V level to get readings out to the WXT536 input.

Figure 49 Connecting Snow Depth Sensor to WXT536
The figure below shows how to wire the snow depth sensor to WXT536.

Figure 50 Wiring Snow Depth Sensor to WXT536
Table 47 IRU-9429 Connections

<table>
<thead>
<tr>
<th>Level sensor connector</th>
<th>IRU 9420S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional sensor connector pin number</td>
<td>Pin function for additional sensor connector</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AGND</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>WSIN</td>
</tr>
<tr>
<td>1</td>
<td>2.5 V</td>
</tr>
</tbody>
</table>
Connecting Pyranometer to WXT536

The following figure shows how to connect pyranometer CMP3 to WXT536.

Figure 51 Connecting CMP3 to WXT536
The following figure shows how to peel CMP3 cable sheath.

![Diagram](image)

Figure 52 Peeling CMP3 Cable Sheath

1 = Red cable
2 = Blue cable
3 = Cable sheath
4 = CMP3 cable
The figure below shows how to wire the pyranometer to WXT536.

Figure 53 Wiring CMP3 to WXT53

1 = Red cable
2 = Blue cable

To wire CMP3 to the solar radiation connector:

- Connect the red cable to pin number 6.
- Connect the blue cable to pin number 7.
Table 48 CMP3 Connections

<table>
<thead>
<tr>
<th>Solar radiation connector</th>
<th>Additional sensor connector pin number</th>
<th>Pin function for additional sensor connector</th>
<th>Wire color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>SR+ Solar radiation sensor input +</td>
<td>Red</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>SR- Solar radiation sensor input -</td>
<td>Blue</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connecting Rain Gauge to WXT536

The following figure shows how to wire rain gauge RG13 to WXT536.

Figure 54 Wiring RG13 to WXT536

1 = Cable tie
2 = Screw terminal 8
3 = Screw terminal 7
4 = Cable shield
5 = Grounding point

To wire RG13 to WXT536:

- Connect the green wire (additional sensor connector pin number 4) to the screw terminal 7.
- Connect the grey wire (additional sensor connector pin number 5) to the screw terminal 8.
Table 49 RG13/RG13H Connections

<table>
<thead>
<tr>
<th>Additional sensor connector pin number</th>
<th>Pin function for additional sensor connector</th>
<th>Pin number</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AGND</td>
<td>7</td>
<td>Normally open contact</td>
</tr>
<tr>
<td>5</td>
<td>TIP IN</td>
<td>8</td>
<td>Normally open contact</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G

COMPLETE SET OF ACCESSORIES

The following figures show the complete set of WXT530 Series accessories.
Figure 55 Complete Set of Accessories
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bird kit</td>
<td>212793</td>
</tr>
<tr>
<td>2</td>
<td>WXT530 Series transmitter</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mounting kit</td>
<td>212792</td>
</tr>
<tr>
<td>4</td>
<td>Mounting accessory between Mounting kit and 60 mm tube</td>
<td>WMSFIX60</td>
</tr>
<tr>
<td>5</td>
<td>Cable USB RS-232/RS-485 1.4 m USB M12 SP</td>
<td>220782</td>
</tr>
<tr>
<td>6</td>
<td>USB service cable delivered with the Vaisala Configuration Tool</td>
<td>220614</td>
</tr>
<tr>
<td>7</td>
<td>Cable 2 m shielded 8-pin M12 SP</td>
<td>222287</td>
</tr>
<tr>
<td>8</td>
<td>Cable 10 m shielded 8-pin M12 SP</td>
<td>222288</td>
</tr>
<tr>
<td>9</td>
<td>Cable 10 m shielded 8-pin M12 SP, connectors on both ends SP</td>
<td>215952</td>
</tr>
<tr>
<td>10</td>
<td>Cable 40 m shielded 12-pin, open end</td>
<td>217020</td>
</tr>
</tbody>
</table>
The following figure shows how to connect surge protector WSP150 to WXT536.

Figure 56 WXT536 with Surge Protector WSP150
1 = Cable with open leads 222287 or 222288
2 = WSP150 surge protector
3 = Data output cable
4 = Operating and heating powers
Figure 57 WXT536 with Surge Protector WSP152
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cable with connectors on both ends</td>
<td>225952</td>
</tr>
<tr>
<td>2</td>
<td>WSP152 surge protector</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>USB cable</td>
<td>220782</td>
</tr>
<tr>
<td>4</td>
<td>Operating and heating powers</td>
<td></td>
</tr>
</tbody>
</table>
This appendix lists all configuration parameters.

Table 50 General Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor settings</td>
<td>Order</td>
<td></td>
<td>1 = Th Heating temperature</td>
<td>SU,R</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>Factory</td>
<td>1 = Vh Heating voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defined*</td>
<td></td>
<td>1 = Vs Supply voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Vr 3.5 V reference voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Id Information field</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved [& = Delimiter]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Th Heating temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Vh Heating voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Vs Supply voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Vr 3.5 V reference voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Id Information field</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device address</td>
<td>0</td>
<td>0 ... 9, A ... Z, a ... z</td>
<td>Address identifier</td>
<td>XU,A</td>
</tr>
<tr>
<td>Protocol selection</td>
<td>Order</td>
<td>defined*</td>
<td>A = ASCII, automatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>option</td>
<td></td>
<td>a = ASCII, automatic w. crc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defined*</td>
<td></td>
<td>P = ASCII, polled</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>p = ASCII, polled w. crc</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N = NMEA, automatic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q = NMEA, query</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S = SDI-12, R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R = SDI, continuous meas</td>
<td></td>
</tr>
</tbody>
</table>

Format: 1111000011000000
First 8 are for combined message and last 8 for composite message.
1 = Data is on
0 = Data is off
Note that you write the parameter format 1111000011000000 but the unit answers:
11110000&11000000
* For the heated unit factory setting is 1111000011000000 and for the non-heated 0000000000000000
Table 50 General Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test message</td>
<td>0</td>
<td></td>
<td>For test purposes</td>
<td>XU,T</td>
</tr>
<tr>
<td>Serial interface</td>
<td>Order</td>
<td>1 = SDI-12</td>
<td>*Note that RS-422 hardware is wired</td>
<td>XU,C</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>2 = RS-232</td>
<td>differently inside the unit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defined</td>
<td>3 = RS-485</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 = RS-422*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat interval in</td>
<td>Order</td>
<td>0 ... 3600 seconds</td>
<td></td>
<td>XU,I</td>
</tr>
<tr>
<td>seconds</td>
<td>option</td>
<td>defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud rate</td>
<td>Order</td>
<td>1200, 2400, 4800, 9600,</td>
<td></td>
<td>XU,B</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>19200, 38400, 57600,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>defined</td>
<td>115200 Bauds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data bits</td>
<td>Order</td>
<td>7, 8</td>
<td></td>
<td>XU,D</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parity</td>
<td>Order</td>
<td>O = Odd, E = Even, N =</td>
<td></td>
<td>XU,P</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop bits</td>
<td>Order</td>
<td>1, 2</td>
<td></td>
<td>XU, S</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS-485 delay</td>
<td>25</td>
<td>0 ... 10000 ms</td>
<td></td>
<td>XU,L</td>
</tr>
<tr>
<td>Device name</td>
<td>Order</td>
<td>WXT531 ... WXT536</td>
<td>Read-only</td>
<td>XU,N</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>defined</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software version</td>
<td>3.xx</td>
<td>3.xx</td>
<td>Read-only</td>
<td>XU,V</td>
</tr>
<tr>
<td></td>
<td>defined</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 51 Pressure, Temperature and Humidity Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTU data controls</td>
<td>Order</td>
<td>1 = Pa Air pressure</td>
<td>1 = Pa Air pressure</td>
<td>TU,R</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>1 = Ta Air temperature</td>
<td>1 = Ta Air temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defined</td>
<td>0 = Tp internal temperature</td>
<td>0 = Tp internal temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Ua Air humidity</td>
<td>1 = Ua Air humidity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td>0 = Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td>0 = Reserved</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[& = Delimiter]</td>
<td>[& = Delimiter]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Pa Air pressure</td>
<td>1 = Data is on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Ta Air temperature</td>
<td>0 = Data is off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Tp internal temperature</td>
<td>Note that you write the parameter format:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Ua Air humidity</td>
<td>11010000011010000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td>but the unit answers 11010000&11010000.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>1 ... 3600 seconds</td>
<td></td>
<td>TU,I</td>
</tr>
<tr>
<td>PTU update interval</td>
<td>H</td>
<td>H = hPa, P = Pascal,</td>
<td>T,U,P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B = bar, I = inHg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature unit</td>
<td>C</td>
<td>C = Celsius,</td>
<td>T,U,T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F = Fahrenheit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 52 Wind Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind data controls</td>
<td>Order option defined</td>
<td>1 = Dn Direction minimum 1 = Dm Direction average 1 = Dx Direction maximum 1 = Sn Speed minimum 1 = Sm Speed average 1 = Sx Speed maximum 0 = Reserved 0 = Reserved [& = Delimiter] 0 = Dn Direction minimum 1 = Dm Direction average 0 = Dx Direction maximum 0 = Sn Speed minimum 0 = Sm Speed average 0 = Sx Speed maximum 0 = Reserved 0 = Reserved</td>
<td>Format: 111110001001000 The first 8 are for combined message and the last 8 for composite message. 1 = Data is on 0 = Data is off Note that you write the parameter format 111110001001000 but the unit answers 11111000&01001000.</td>
<td>WU,R</td>
</tr>
<tr>
<td>Wind update interval</td>
<td>5</td>
<td>1 ... 3600 seconds</td>
<td></td>
<td>WU,I</td>
</tr>
<tr>
<td>Wind averaging time</td>
<td>3</td>
<td>1 ... 3600 seconds</td>
<td></td>
<td>WU,A</td>
</tr>
<tr>
<td>Wind speed calculation mode</td>
<td>1</td>
<td>1 = Max/min calculation 3 = Gust/lull calculation</td>
<td></td>
<td>WU,G</td>
</tr>
<tr>
<td>Wind speed unit</td>
<td>M</td>
<td>M = m/s, K = km/h, S = mph, N = knots</td>
<td></td>
<td>WU,U</td>
</tr>
<tr>
<td>Wind direction offset</td>
<td>0</td>
<td>-180 ... 180</td>
<td></td>
<td>WU,D</td>
</tr>
<tr>
<td>NMEA format</td>
<td>W</td>
<td>T = XDR, W = MWV</td>
<td></td>
<td>WU,N</td>
</tr>
<tr>
<td>Sampling rate</td>
<td>4</td>
<td>1, 2, 4 Hz</td>
<td></td>
<td>WU,F</td>
</tr>
</tbody>
</table>
Table 53 Precipitation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitation data controls</td>
<td></td>
<td>1 = Rc Rain amount</td>
<td>Format: 1111100100000000</td>
<td>RU,R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Rd Rain duration</td>
<td>The first 8 are for combined message and the last 8 for composite message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Ri Rain intensity</td>
<td>1 = Data is on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Hc Hail amount</td>
<td>0 = Data is off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Hd Hail duration</td>
<td>Note that you write the parameter format</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Hi Hail intensity</td>
<td>1111100100000000 but the unit answers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Rp Rain peak</td>
<td>1111100&10000000.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Rp Hail peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation update interval</td>
<td>60</td>
<td>1 ... 3600 seconds</td>
<td></td>
<td>RU,I</td>
</tr>
<tr>
<td>Precipitation unit</td>
<td>M</td>
<td>M = metric (mm, s, mm/h)</td>
<td></td>
<td>RU,U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>l = imperial (in, s, in/h)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 54 Auxiliary Sensor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary sensor controls</td>
<td>Order</td>
<td>1 = Tr pt1000 temperature</td>
<td>Format: 1111100011111000</td>
<td>IU,R</td>
</tr>
<tr>
<td></td>
<td>option</td>
<td>1 = Ra Aux. rain amount</td>
<td>The first 8 are for combined message and the last 8 for composite message.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>defined</td>
<td>1 = Sl Snow level</td>
<td>1 = Data is on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Sr Solar radiation</td>
<td>0 = Data is off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Rt pt1000 resistance</td>
<td>Note that you write the parameter format</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Reserved</td>
<td>1111100011111000 but the unit answers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Analog output mode*</td>
<td>*Note that Analog output mode is never set when external sensors are in use.</td>
<td></td>
</tr>
<tr>
<td>Auxiliary sensor update interval</td>
<td>60</td>
<td>0.5 ... 3600 seconds</td>
<td></td>
<td>IU,I</td>
</tr>
</tbody>
</table>
Table 54 Auxiliary Sensor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary sensor averaging time</td>
<td>3</td>
<td>0.25 ... 3600 seconds</td>
<td></td>
<td>IU,A</td>
</tr>
<tr>
<td>Auxiliary rain sensor gain</td>
<td>0.2</td>
<td>0.0000000001 ... 1000000</td>
<td></td>
<td>IA,G</td>
</tr>
<tr>
<td>Reset mode (cumulative rain amount resetting)</td>
<td>M</td>
<td>M = resets rain when pulse amount exceeds 65535. When gain is 0.2, it resets at 65536*0.2 = 13107 (mm) L = resets when reaching limit value A = Cumulative rain value is reset every time rain information is sent out from transmitter (user counts cumulative rain amount).</td>
<td>IA,M</td>
<td></td>
</tr>
<tr>
<td>Rain reset limit</td>
<td>1000</td>
<td>0.0000000001 ... 1000000</td>
<td></td>
<td>IA,L</td>
</tr>
<tr>
<td>Auxiliary solar sensor gain</td>
<td>100000</td>
<td>0.0000000001 ... 1000000</td>
<td></td>
<td>IB,G</td>
</tr>
<tr>
<td>Auxiliary level sensor gain</td>
<td>1</td>
<td>0.0000000001 ... 1000000</td>
<td></td>
<td>IS,G</td>
</tr>
<tr>
<td>Auxiliary level sensor operating range</td>
<td>1</td>
<td>0 = 0 to 2.5 V range 1 = 0 to 5.0 V range 2 = 0 to 10.0 V range</td>
<td></td>
<td>IS,M</td>
</tr>
<tr>
<td>Auxiliary temperature averaging</td>
<td>1</td>
<td>0.5 ... 3600</td>
<td></td>
<td>IP,A</td>
</tr>
</tbody>
</table>
Table 55 Analog mA Output Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory</th>
<th>Range</th>
<th>Info</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary sensor definitions</td>
<td>Order option defined</td>
<td>1 = Tr pt1000 temperature 1 = Ra Aux. rain amount 1 = Sr Solar radiation 1 = Rt pt1000 resistance 0 = Reserved 1 = Analog output mode 0 = Reserved [& = Delimiter] 1 = Tr pt1000 temperature 1 = Ra Aux. rain amount 1 = Sl Snow level 1 = Sr Solar radiation 1 = Rt pt1000 resistance 0 = Reserved 0 = Reserved 0 = Reserved</td>
<td>Format: 0000001000000000 1 = mA output is in use 0 = mA output is off Note that you write the parameter format 0000001000000000 but the unit answers 00000010&00000000 Note that the analog output mode is used only in WXT532 with the mA output option.</td>
<td>IU,R</td>
</tr>
<tr>
<td>Wind speed gain</td>
<td>Order option defined</td>
<td>0.0000000001 ... 1000000</td>
<td>4 ... 20 mA = 0.266667 (20 mA = 60 m/s) 0 ... 20 mA = 0.333333 (20 mA = 60 m/s)</td>
<td>SU,a</td>
</tr>
<tr>
<td>Wind speed offset</td>
<td>Order option defined</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 4 0 ... 20 mA = 0</td>
<td>SU,b</td>
</tr>
<tr>
<td>Wind speed minimum</td>
<td>0</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 0 0 ... 20 mA = 0</td>
<td>SU,c</td>
</tr>
<tr>
<td>Wind speed maximum</td>
<td>20</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 20 0 ... 20 mA = 20</td>
<td>SU,d</td>
</tr>
<tr>
<td>Wind speed error indication</td>
<td>22</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 22 0 ... 20 mA = 22</td>
<td>SU,e</td>
</tr>
<tr>
<td>Wind direction gain</td>
<td>Order option defined</td>
<td>0.0000000001 ... 1000000</td>
<td>4 ... 20 mA = 0.044444 0 ... 20 mA = 0.055556</td>
<td>SU,f</td>
</tr>
<tr>
<td>Wind direction offset</td>
<td>Order option defined</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 4 0 ... 20 mA = 0</td>
<td>SU,g</td>
</tr>
<tr>
<td>Wind direction minimum</td>
<td>0</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 0 0 ... 20 mA = 0</td>
<td>SU,h</td>
</tr>
<tr>
<td>Wind direction maximum</td>
<td>20</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 20 0 ... 20 mA = 20</td>
<td>SU,j</td>
</tr>
<tr>
<td>Wind direction error indication</td>
<td>22</td>
<td>0 ... 24</td>
<td>4 ... 20 mA = 22 0 ... 20 mA = 22</td>
<td>SU,k</td>
</tr>
</tbody>
</table>