AC Current
Falcon F45 Series Digital Panel Meter

- Full 4-1/2 Digit, Bright Red 0.56" (14.2mm) Display
- Broad Range Display Scaling
-Short 2.94" (74.7mm) Deep, 1/8 DIN Case
- Screw Terminal Connector for Easy Installation
- Four User-Settable Ranges: 200mA, 2mA, 20mA, 200mA
- TwoFactory-Settable Ranges: 2A, 5A
- Optional Isolated 9-32VDC Power Supply

The Falcon Series digital indicators are premium quality $1 / 8$ DIN meters for industrial applications. All Falcon units feature jumper-selectable decimal point (internal and on the connector for remote decimal point) and display scaling, providing wide application flexibility. In addition, most signal input ranges are easy to change with jumpers on the main board. The Falcon has a 0.56 " bright red LED display for high visibility.

Compactly designed for applications requiring minimal rear panel depth, the Falcon fits a standard 1/8 DIN panel cutout ($91.9 \mathrm{~mm} \times 45 \mathrm{~mm}$) and requires less than 3 " behind the panel. A screw terminal connector is a standard feature for easy wiring of the power supply and signal input connections.

Installation and Panel Cutout

Specifications

DISPLAY	ENVIRONMENTAL	MECHANICAL			
Type: 7-segment, red LED	Operating Temperature: 0 to $55^{\circ} \mathrm{C}$	Bezel: 3.78 " $1.89^{\prime \prime} \times .51 "(96 \times 48 \times 13 \mathrm{~mm}$)			
Height: 0.56 " (14.2 mm)	Storage Temperature: -10 to $60^{\circ} \mathrm{C}$	Depth: 2.94 " (74.7 mm)			
Decimal Point: 4-position programmable internally or at terminal block J112	Relative Humidity: 0 to 85% non-condensing				
Overrange indication: most significant digit $=$ " 1 "; other digits blank	Temperature Coefficient: ($\pm 0.05 \%$ of input ± 0.5 count) $/{ }^{\circ} \mathrm{C}$	Case Material: $94 \mathrm{~V}-1$, UL rated Noryle Weight: 9.0oz (255.1g)			
Polarity: Automatic, with "-" indication, " + " indication implied	Warm-up Time: Less than 15 minutes	INPUTS: AC/AC TRMS Current			
POWER REQUIREMENTS AC Voltages: 120 or $220 \mathrm{VAC}, \pm 10 \% 50 / 60 \mathrm{~Hz}$ DC Voltages: $9-32 \mathrm{VDC} ; 9 \mathrm{~V}-1 \%$ and $32+1 \%$ Power Consumption: 2VA	Response Time: Less than 1 second NOISE REJECTION NMRR: $60 \mathrm{~dB}, 50 / 60 \mathrm{~Hz}$	Input Range	Display Resolution	Input Impedance	Maximum Overload
	CMRR: ($\mathrm{w} / 1 \mathrm{k} \Omega$ unbalanced @ 60 Hz):	$200 \mu \mathrm{~A}$	10nA	10 mA	200mV
	90dB min.	2 mA	100nA	40 mA	
ACCURACY @ $25^{\circ} \mathrm{C}$ $\pm 0.5 \%$ of reading ± 35 count	ANALOG TO DIGITAL CONVERSION Technique: Dual slope integration Rate: 2.5 samples per second, nominal	20 mA	$1 \mu \mathrm{~A}$	100 mA	
		200 mA	$10 \mu \mathrm{~A}$	500 mA	
		2A	$100 \mu \mathrm{~A}$	2.2A	
		5A	1 mA	5.2 A	

Wiring Diagram

1	2	3	4	5	6	7	8	9	10	11	12
T $\underline{\underline{2}}$	$\xrightarrow{\text { 인 }}$	$\begin{aligned} & \text { Q } \\ & \text { 오 } \end{aligned}$	ט	$\begin{aligned} & \overline{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & 0 \end{aligned}$	$\begin{gathered} \text { UX } \\ \underset{\sim}{+} \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 충 } \\ & \text { CO } \\ & \hline \end{aligned}$

Input Signal: Connect the signal to be monitored to the IN HI and IN LO terminals. These are terminals \#1 and \#2.

Supply Power: Connect the power to terminals \#11 and \#12. Note that if AC power is applied, terminal \#11 is for neutral, and terminal \#12 is for hot. If DC power is used, terminal \# 11 is for -DC, and \#12 is for $+D C$.

Display Hold: This feature allows you to hold the displayed value indefinitely. A remote switch or computer, etc. can be used to activate this feature. To activate feature, short pins 3 and 4 (HOLD and DIG GND). This connection must be kept isolated from other circuitry. To hold multiple units, separate poles of the switch must be used to maintain the isolation.

These instruments are designed for maximum safety to the operator when mounted in a panel according to instructions. They are not to be used unmounted or for exploratory measurements in unknown circuits.

Decimal Point Selection

From terminal block J112: The decimal point can be set from the rear screw terminal block J112. Connect the appropriate DP point (DP 1,2,3,4) to the DIG GND terminal. Internal jumper (J107) must be removed.

Current Range Selection

All Falcon Indicators are configured initially per the customer specified part number. Range changes can easily be accomplished as follows: Disconnect power and pop the front bezel off with a small screwdriver, taking care to keep the gaskets in place. Unscrew the main board from the case with a Phillips head screwdriver, and slide the main board out. Note: If a new range is selected, the calibration procedure must also be performed. Only perform this section if a different function or range is required.

Note: JU101 is a hard wire jumper and can be removed by cutting it. Resoldering the JU jumpers is not recommended. If this is required, or if a function is to be changed from current to volts, Simpson recommends returning the Falcon to the factory or an Authorized Service Center. After moving the jumpers to the desired location, put the Falcon back together and install in your panel, or proceed to calibration.

Input Range	J104 PJ	JU101 Jumper Posi- tion
$200 \mu \mathrm{~A}$	A	A
2 mA	B	A
20 mA	D	A
200 mA	E	A

* 2 Amp and 5 Amp ranges may be configured upon order by factory or Authorized Service Center

Display

The Falcon display can be easily scaled to a broad range of engineering units. The meter can be scaled down to $1 / 2$ of the input value. Remove the front bezel with a small screwdriver. The scaling procedure is performed at terminal J1 located on the left side of the display board. There are four sets of pins of J1. Each group of pins programs a particular parameter of the scaling procedure when a push-on jumper (supplied with the Falcon) is momentarily placed across a set of pins.

Before scaling the parameters, begin by disconnecting power to the Falcon. Place push-on jumper onto "SET UP" pins C and 2, then apply power. At this point, the Falcon performs a self test (scrolls LED display) and then indicates LoE, allowing you to enter the low electrical input value.

The scaling parameters for electrical low input value (LoE), electrical high input value (HiE), display low value (Lo), and display high value (Hi) are performed as follows:

Remove push-on jumper from C-2 and then replace. Numeral zero or digit of LoE value (set at the factory) and flashing decimal point are displayed at starting LED position. The digit to be entered is always to the left of the flashing decimal point. The flashing decimal point is moved one position each time the push-on jumper is momentarily placed across "SET UP" pins C and 2. Change the value at the LED position chosen by momentarily placing jumper across "UP" pins C and 3 . This will increase the value by 1 for each repetition. Repeat jumper placement until the desired value is displayed. To decrease a displayed value, momentarily place jumper across "DOWN" pins C and 4.

After the desired numeric value is obtained, remove the jumper and momentarily place it across the "ENTER" pins C and 1 . This will store the value in memory and move on to the next parameter. Repeat this procedure through each parameter.

After programming the last parameter (Hi) of the scaling procedure, LED will display "END" and then indicate scaled value of the electrical input to the meter. The unit is now in run mode.

Note: During programming, the flashing decimal point is considered as a cursor only. The placement of the digits in the positions 1 to 5 is important, and dependent on the set input range.

Calibration

The unit is calibrated at the factory per order.
If you selected another range and moved the jumpers, your Falcon will need to be recalibrated.

If parameters (HiE, etc.) are changed, scaling must be performed prior to calibration.

1) Place jumper across J 112 screw terminal block contacts 1 (IN HI) and 2 (IN LO).
2) Adjust potentiometer RV1 on the AC printed circuit board (plugged into main board) until LED display reads ± 1 count. Replace jumper connected to J 112 pins 1 and 2 with AC input signal for full scale value.
3) Adjust the potentiometer R1 located on the upper left-hand side of the display board until display shows the full scale voltage.
4) Replace bezel carefully

Application Example

A customer needs to monitor the load current (50 amps) of an AC motor.

A Falcon 4-1/2 digit 5 Amp AC indicator can be used in conjunction with a 50:5 amp Donut Current Transformer. The indicator must be scaled to display 50.00 when 5 amps are applied. The indicator is connected to the Donut. One side of the AC power supply is fed through the donut.

LoE should be set at 0 .
HiE should be set at 20,000.
Lo is scaled to display 0 and Hi is scaled to display 50.00.

All that is required for this application is a decimal point change.

Ordering Information

Safety Symbols

Accessories

	Donut Current Transformers enable the Falcon to monitor AC current up to 19999 amps. The Donut (also known as a "Toroid") is placed around one of the legs of the device being monitored, and emits up to a 5 amp signal. The Falcon can be scaled to accurately display the current being monitored. Each Donut comes with 2' long secondary leads.	Order Information		
		Range / Amps		
		Primary	Secondary	Catalog No.
		50	5	01293
		75	5	01306
		100	5	01297
		150	5	01298
		200	5	01299
		250	5	01313
		300	5	01300
		400	5	01305
		500	5	01301
		600	5	02303
		750	5	02459
		1000	5	02304

